Lyu Nan, Deng Daihua, Xiang Yuting, Du Zeyu, Mou Xiaohui, Ma Qing, Huang Nan, Lu Jing, Li Xin, Yang Zhilu, Zhang Wentai
Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China.
GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou, Guangdong, 510670, China.
Bioact Mater. 2023 Dec 9;33:562-571. doi: 10.1016/j.bioactmat.2023.12.004. eCollection 2024 Mar.
Thrombus formation and tissue embedding significantly impair the clinical efficacy and retrievability of temporary interventional medical devices. Herein, we report an insect sclerotization-inspired antifouling armor for tailoring temporary interventional devices with durable resistance to protein adsorption and the following protein-mediated complications. By mimicking the phenol-polyamine chemistry assisted by phenol oxidases during sclerotization, we develop a facile one-step method to crosslink bovine serum albumin (BSA) with oxidized hydrocaffeic acid (HCA), resulting in a stable and universal BSA@HCA armor. Furthermore, the surface of the BSA@HCA armor, enriched with carboxyl groups, supports the secondary grafting of polyethylene glycol (PEG), further enhancing both its antifouling performance and durability. The synergy of robustly immobilized BSA and covalently grafted PEG provide potent resistance to the adhesion of proteins, platelets, and vascular cells . In blood circulation experiment, the armored surface reduces thrombus formation by 95 %. Moreover, the antifouling armor retained over 60 % of its fouling resistance after 28 days of immersion in PBS. Overall, our armor engineering strategy presents a promising solution for enhancing the antifouling properties and clinical performance of temporary interventional medical devices.
血栓形成和组织包埋显著损害了临时介入医疗设备的临床疗效和可回收性。在此,我们报告了一种受昆虫硬化启发的防污涂层,用于定制具有持久抗蛋白质吸附及后续蛋白质介导并发症能力的临时介入设备。通过模拟硬化过程中酚氧化酶辅助的酚 - 多胺化学过程,我们开发了一种简便的一步法,将牛血清白蛋白(BSA)与氧化的对羟基苯甲酸(HCA)交联,从而得到一种稳定且通用的BSA@HCA涂层。此外,富含羧基的BSA@HCA涂层表面支持聚乙二醇(PEG)的二次接枝,进一步增强其防污性能和耐久性。牢固固定的BSA与共价接枝的PEG协同作用,对蛋白质、血小板和血管细胞的粘附具有强大的抗性。在血液循环实验中,有涂层的表面使血栓形成减少了95%。此外,防污涂层在PBS中浸泡28天后仍保留超过60%的抗污能力。总体而言,我们的涂层工程策略为增强临时介入医疗设备的防污性能和临床性能提供了一个有前景的解决方案。