Lipinski Arthur F, Lambert Christopher W, Maity Achyut, Hendren William R, Edwards Paul R, Martin Robert W, Bowman Robert M
School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, U.K.
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, U.K.
ACS Appl Electron Mater. 2023 Dec 13;5(12):6929-6937. doi: 10.1021/acsaelm.3c01344. eCollection 2023 Dec 26.
Titanium nitride (TiN) has emerged as a highly promising alternative to traditional plasmonic materials. This study focuses on the inclusion of a CrRu buffer layer between the substrate and thin TiN film, which enables the use of cost-effective, amorphous technical substrates while preserving high film quality. We report best-in-class TiN thin films fabricated on fused silica wafers, achieving a maximum plasmonic figure of merit, -ϵ'/ϵ″, of approximately 2.8, even at a modest wafer temperature of around 300 °C. Furthermore, we delve into the characterization of TiN thin film quality and fabricated TiN triangular nanostructures, employing attenuated total reflectance and cathodoluminescence techniques to highlight their potential applications in surface plasmonics.
氮化钛(TiN)已成为传统等离子体材料极具前景的替代品。本研究着重于在衬底和TiN薄膜之间加入CrRu缓冲层,这使得在保持高薄膜质量的同时能够使用经济高效的非晶技术衬底。我们报告了在熔融石英晶圆上制备的一流TiN薄膜,即使在约300°C的适度晶圆温度下,也能实现约2.8的最大等离子体品质因数-ϵ'/ϵ″。此外,我们深入研究了TiN薄膜质量和制备的TiN三角形纳米结构的表征,采用衰减全反射和阴极发光技术来突出它们在表面等离子体激元学中的潜在应用。