Jiang Hao, Cheng Jinbing, He Junbao, Pu Chunying, Huang Xiaoyu, Chen Yichong, Lu Xiaohong, Lu Yang, Zhang Deyang, Wang Zhaorui, Leng Yumin, Chu Paul K, Luo Yongsong
Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
Key Laboratory of Microelectronics and Energy of Henan Province, Engineering Research Center for MXene Energy Storage Materials of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
ACS Omega. 2023 Dec 11;8(51):49017-49026. doi: 10.1021/acsomega.3c06674. eCollection 2023 Dec 26.
Flexible electrodes for energy storage and conversion require a micro-nanomorphology and stable structure. Herein, MXene fibers (MX-CNF) are fabricated by electrospinning, and Co-MOF nanoarrays are prepared on the fibers to form Co-MOF@MX-CNF. Hydrolysis and etching of Co-MOF@MX-CNF in the Ni solution produce cobalt-nickel layered double hydroxide (CoNi-LDH). The CoNi-LDH nanoarrays on the MX-CNF substrate have a large specific surface area and abundant electrochemical active sites, thus ensuring effective exposure of the CoNi-LDH active materials to the electrolyte and efficient pseudocapacitive energy storage and fast reversible redox kinetics for enhanced charging-discharging characteristics. The CoNi-LDH@MX-CNF electrode exhibits a discharge capacity of 996 F g at a current density of 1 A g as well as 78.62% capacitance retention after 3,000 cycles at 10 A g. The asymmetric supercapacitor (ASC) comprising the CoNi-LDH@MX-CNF positive electrode and negative activated carbon electrode shows an energy density of 48.4 Wh kg at a power density of 499 W kg and a capacity retention of 78.9% after 3,000 cycles at a current density of 10 A g. Density-functional theory calculations reveal the charge density difference and partial density of states of CoNi-LDH@MX-CNF confirming the large potential of the CoNi-LDH@MX-CNF electrode in energy storage applications.
用于能量存储和转换的柔性电极需要具有微纳形态和稳定结构。在此,通过静电纺丝制备了MXene纤维(MX-CNF),并在纤维上制备了Co-MOF纳米阵列,形成Co-MOF@MX-CNF。Co-MOF@MX-CNF在Ni溶液中进行水解和蚀刻,生成钴镍层状双氢氧化物(CoNi-LDH)。MX-CNF基底上的CoNi-LDH纳米阵列具有较大的比表面积和丰富的电化学活性位点,从而确保CoNi-LDH活性材料能够有效地暴露于电解质中,并实现高效的赝电容储能以及快速可逆的氧化还原动力学,以增强充放电特性。CoNi-LDH@MX-CNF电极在1 A g的电流密度下表现出996 F g的放电容量,在10 A g下经过3000次循环后电容保持率为78.62%。由CoNi-LDH@MX-CNF正极和负极活性炭电极组成的不对称超级电容器(ASC)在499 W kg的功率密度下能量密度为48.4 Wh kg,在10 A g的电流密度下经过3000次循环后容量保持率为78.9%。密度泛函理论计算揭示了CoNi-LDH@MX-CNF的电荷密度差和态密度分布,证实了CoNi-LDH@MX-CNF电极在能量存储应用中的巨大潜力。