Zhang Qianqian, Wang Shirui, Lan Yuling, Deng Jianping, Fan Mizi, Du Guanben, Zhao Weigang
College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China.
College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China; College of Materials Science, Chang'an University, South Second Ring Road West Section, Xi'an, Shaanxi 710064, People's Republic of China.
J Colloid Interface Sci. 2024 Apr 15;660:597-607. doi: 10.1016/j.jcis.2024.01.105. Epub 2024 Jan 19.
Enhancing the performance of layered nickel-cobalt double hydroxides (NiCo-LDH) as electrode materials for supercapacitors represents a promising strategy for optimizing energy storage systems. However, the complexity of the preparation method for electrode materials with enhanced electrochemical performance and the inherent defects of nickel-cobalt LDH remain formidable challenges. In this study, we synthesized acetate-ion-intercalated NiCo-LDH (NCLA) through a simple one-step hydrothermal method. The physical and chemical structural properties and supercapacitor characteristics of the as-prepared NCLA were systematically characterized. The results indicated that the introduction of Ac engendered a distinctive tetragonal crystal structure in NiCo-LDH, concomitant with a reduced interlayer spacing, thus enhancing structural stability. Electrochemical measurements revealed that NCLA-8 exhibited a specific capacitance of 1032.2 F g at a current density of 1 A g and a high specific capacitance of 922 F g at 10 A g, demonstrating a rate performance of 89.3%. Furthermore, NCLA-8 was used to construct the positive electrode of an asymmetric supercapacitor, while the negative electrode was composed of activated carbon. This configuration resulted in an energy density of 67.7 Wh kg at a power density of 800 W kg. Remarkably, the asymmetric supercapacitor retained 82.8% of its initial capacitance following 3000 charge-discharge cycles at a current density of 10 A g. Thus, this study demonstrates the efficacy of acetate-ion intercalation in enhancing the electrochemical performance of NiCo-LDH, establishing it as a viable electrode material for supercapacitors.
提高层状镍钴双氢氧化物(NiCo-LDH)作为超级电容器电极材料的性能,是优化储能系统的一个有前景的策略。然而,制备具有增强电化学性能的电极材料的方法复杂,以及镍钴LDH的固有缺陷,仍然是巨大的挑战。在本研究中,我们通过简单的一步水热法合成了醋酸根离子插层的NiCo-LDH(NCLA)。对所制备的NCLA的物理和化学结构性质以及超级电容器特性进行了系统表征。结果表明,醋酸根的引入在NiCo-LDH中产生了独特的四方晶体结构,同时层间距减小,从而增强了结构稳定性。电化学测量表明,NCLA-8在1 A g的电流密度下表现出1032.2 F g的比电容,在10 A g下表现出922 F g的高比电容,倍率性能为89.3%。此外,NCLA-8用于构建不对称超级电容器的正极,负极由活性炭组成。这种配置在800 W kg的功率密度下产生了67.7 Wh kg的能量密度。值得注意的是,在10 A g的电流密度下进行3000次充放电循环后,不对称超级电容器保留了其初始电容的82.8%。因此,本研究证明了醋酸根离子插层在提高NiCo-LDH电化学性能方面的有效性,使其成为超级电容器的一种可行电极材料。