Warm Eric J, Kinnear Benjamin, Knopp Michelle I, Powers-Fletcher Margaret, Segev Mati, Willauer Alexandra, Schauer Daniel
Acad Med. 2024 Apr 1;99(4S Suppl 1):S57-S63. doi: 10.1097/ACM.0000000000005610. Epub 2023 Dec 28.
High-quality precision education (PE) aims to enhance outcomes for learners and society by incorporating longitudinal data and analytics to shape personalized learning strategies. However, existing educational data collection methods often suffer from fragmentation, leading to gaps in understanding learner and program performance. In this article, the authors present a novel approach to PE at the University of Cincinnati, focusing on the Ambulatory Long Block, a year-long continuous ambulatory group-practice experience. Over the last 17 years, the Ambulatory Long Block has evolved into a sophisticated data collection and analysis system that integrates feedback from various stakeholders, as well as learner self-assessment, electronic health record utilization information, and clinical throughput metrics. The authors detail their approach to data prioritization, collection, analysis, visualization, and feedback, providing a practical example of PE in action. This model has been associated with improvements in both learner performance and patient care outcomes. The authors also highlight the potential for real-time data review through automation and emphasize the importance of collaboration in advancing PE. Generalizable principles include designing learning environments with continuity as a central feature, gathering both quantitative and qualitative performance data from interprofessional assessors, using this information to supplement traditional workplace-based assessments, and pairing it with self-assessments. The authors advocate for criterion referencing over normative comparisons, using user-friendly data visualizations, and employing tailored coaching strategies for individual learners. The Ambulatory Long Block model underscores the potential of PE to drive improvements in medical education and health care outcomes.
高质量精准教育(PE)旨在通过整合纵向数据和分析来制定个性化学习策略,从而提高学习者和社会的学习成果。然而,现有的教育数据收集方法往往存在碎片化问题,导致在了解学习者和项目表现方面存在差距。在本文中,作者介绍了辛辛那提大学一种新颖的精准教育方法,重点关注门诊长期实习模块,这是一种为期一年的持续门诊小组实践体验。在过去17年里,门诊长期实习模块已发展成为一个复杂的数据收集和分析系统,该系统整合了来自不同利益相关者的反馈,以及学习者的自我评估、电子健康记录使用信息和临床通量指标。作者详细阐述了他们在数据优先级确定、收集、分析、可视化和反馈方面的方法,提供了一个精准教育实际应用的实例。该模式与学习者表现和患者护理结果的改善相关联。作者还强调了通过自动化进行实时数据审查的潜力,并强调了合作在推进精准教育方面的重要性。可推广的原则包括设计以连续性为核心特征的学习环境,从跨专业评估者那里收集定量和定性的表现数据,利用这些信息补充传统的基于工作场所的评估,并将其与自我评估相结合。作者主张采用标准参照而非常模比较,使用用户友好的数据可视化,并为个体学习者采用量身定制的辅导策略。门诊长期实习模块模式凸显了精准教育在推动医学教育和医疗保健结果改善方面的潜力。