Engineering Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru.
Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru.
BMC Bioinformatics. 2024 Jan 2;25(1):1. doi: 10.1186/s12859-023-05612-6.
Graph embedding techniques are using deep learning algorithms in data analysis to solve problems of such as node classification, link prediction, community detection, and visualization. Although typically used in the context of guessing friendships in social media, several applications for graph embedding techniques in biomedical data analysis have emerged. While these approaches remain computationally demanding, several developments over the last years facilitate their application to study biomedical data and thus may help advance biological discoveries. Therefore, in this review, we discuss the principles of graph embedding techniques and explore the usefulness for understanding biological network data derived from mass spectrometry and sequencing experiments, the current workhorses of systems biology studies. In particular, we focus on recent examples for characterizing protein-protein interaction networks and predicting novel drug functions.
图嵌入技术是在数据分析中使用深度学习算法来解决节点分类、链路预测、社区检测和可视化等问题。尽管通常用于社交媒体中猜测友谊,但图嵌入技术在生物医学数据分析中也有几个应用。虽然这些方法仍然需要大量的计算资源,但过去几年的一些发展使得它们能够应用于研究生物医学数据,从而有助于推进生物学发现。因此,在这篇综述中,我们讨论了图嵌入技术的原理,并探讨了其用于理解质谱和测序实验衍生的生物网络数据的有用性,这些数据是系统生物学研究的当前主力军。特别是,我们重点介绍了最近用于描述蛋白质-蛋白质相互作用网络和预测新药物功能的示例。