Suppr超能文献

基于图和序列深度学习嵌入预测药物-靶标相互作用。

Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.

机构信息

Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 510275, China.

Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.

出版信息

J Phys Chem A. 2021 Jul 1;125(25):5633-5642. doi: 10.1021/acs.jpca.1c02419. Epub 2021 Jun 18.

Abstract

Computational approaches for predicting drug-target interactions (DTIs) play an important role in drug discovery since conventional screening experiments are time-consuming and expensive. In this study, we proposed end-to-end representation learning of a graph neural network with an attention mechanism and an attentive bidirectional long short-term memory (BiLSTM) to predict DTIs. For efficient training, we introduced a bidirectional encoder representations from transformers (BERT) pretrained method to extract substructure features from protein sequences and a local breadth-first search (BFS) to learn subgraph information from molecular graphs. Integrating both models, we developed a DTI prediction system. As a result, the proposed method achieved high performances with increases of 2.4% and 9.4% for AUC and recall, respectively, on unbalanced datasets compared with other methods. Extensive experiments showed that our model can relatively screen potential drugs for specific protein. Furthermore, visualizing the attention weights provides biological insight.

摘要

计算方法在药物-靶点相互作用(DTI)预测中发挥着重要作用,因为传统的筛选实验既耗时又昂贵。在这项研究中,我们提出了一种基于图神经网络的端到端表示学习方法,该方法结合了注意力机制和注意力双向长短期记忆(BiLSTM),用于预测 DTI。为了实现高效训练,我们引入了一种从转换器(BERT)预训练方法中提取蛋白质序列子结构特征的方法,以及一种局部广度优先搜索(BFS)方法,用于从分子图中学习子图信息。我们整合了这两个模型,开发了一个 DTI 预测系统。结果表明,与其他方法相比,该方法在不平衡数据集上的 AUC 和召回率分别提高了 2.4%和 9.4%,性能有了显著提高。大量实验表明,我们的模型可以相对筛选出针对特定蛋白质的潜在药物。此外,可视化注意力权重提供了生物学见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验