Department of Chemical and Bioprocess Engineering, School of Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
BMC Bioinformatics. 2024 Jan 2;25(1):3. doi: 10.1186/s12859-023-05616-2.
Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees.
Here, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support.
LooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.
在对代谢网络的能力进行无偏评估时,对质量平衡通量解进行均匀随机抽样是一种有效的方法。不幸的是,当使用凸抽样器对大型代谢模型进行抽样时,在通量样本中不可避免地会出现热力学不可行的循环。目前,用于随机抽样非凸无环通量空间的策略效率有限,且缺乏理论保证。
在这里,我们提出了 LooplessFluxSampler,这是一种基于自适应方向采样在盒子上(ADSB)算法对代谢模型的无环质量平衡通量解空间进行探索的有效算法。ADSB 算法基于一般自适应方向采样(ADS)框架,特别是并行 ADS,对于从任意分布中进行采样,都有理论收敛性和不可约性结果。通过采样自适应于目标分布的方向,ADSB 可以更有效地遍历样本空间,比其他方法更快地混合。重要的是,所提出的算法保证了在凸区域上对均匀分布的目标,并且在样本具有完全支持的情况下,对于更一般的(非凸)区域上的后者分布,它可以被证明是收敛的。
LooplessFluxSampler 使对大型代谢模型的无环质量平衡解空间进行可扩展的统计推断成为可能。基于理论上合理的框架,该工具箱不仅提供了高效的结果,而且还为探索几乎肯定是非凸无环通量空间的特性提供了可靠的结果。最后,LooplessFluxSampler 包括一个马尔可夫链诊断套件,用于评估最终样本的质量和算法的性能。