Suppr超能文献

CHRR:通过舍入进行协调的命中即跑,用于基于约束模型的均匀采样。

CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models.

作者信息

Haraldsdóttir Hulda S, Cousins Ben, Thiele Ines, Fleming Ronan M T, Vempala Santosh

机构信息

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.

School of Computer Science, Algorithms and Randomness Center, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Bioinformatics. 2017 Jun 1;33(11):1741-1743. doi: 10.1093/bioinformatics/btx052.

Abstract

SUMMARY

In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. We apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.

AVAILABILITY AND IMPLEMENTATION

https://github.com/opencobra/cobratoolbox .

CONTACT

ronan.mt.fleming@gmail.com or vempala@cc.gatech.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

在基于约束的代谢建模中,物理和生化约束定义了一个可行通量向量的多面体凸集。对该集合进行均匀采样可提供生化网络代谢能力的无偏表征。然而,由于基因组规模生化网络的高维度和固有各向异性,对其进行可靠的均匀采样具有挑战性。在此,我们展示了一种新采样算法——带舍入的坐标命中与运行(CHRR)的实现。该算法基于可证明有效的命中与运行随机游走,并且关键地使用了一个预处理步骤来对各向异性通量集进行舍入。CHRR可证明收敛到均匀的平稳采样分布。我们将其应用于维度不断增加的代谢网络。我们表明,它的收敛速度比一种流行的人工中心化命中与运行算法快几倍,从而能够对基因组规模生化网络进行可靠且易于处理的采样。

可用性与实现

https://github.com/opencobra/cobratoolbox

联系方式

ronan.mt.fleming@gmail.comvempala@cc.gatech.edu

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d432/5447232/4a19148a0a25/btx052f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验