Haraldsdóttir Hulda S, Cousins Ben, Thiele Ines, Fleming Ronan M T, Vempala Santosh
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
School of Computer Science, Algorithms and Randomness Center, Georgia Institute of Technology, Atlanta, GA, USA.
Bioinformatics. 2017 Jun 1;33(11):1741-1743. doi: 10.1093/bioinformatics/btx052.
In constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. We apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.
https://github.com/opencobra/cobratoolbox .
ronan.mt.fleming@gmail.com or vempala@cc.gatech.edu.
Supplementary data are available at Bioinformatics online.
在基于约束的代谢建模中,物理和生化约束定义了一个可行通量向量的多面体凸集。对该集合进行均匀采样可提供生化网络代谢能力的无偏表征。然而,由于基因组规模生化网络的高维度和固有各向异性,对其进行可靠的均匀采样具有挑战性。在此,我们展示了一种新采样算法——带舍入的坐标命中与运行(CHRR)的实现。该算法基于可证明有效的命中与运行随机游走,并且关键地使用了一个预处理步骤来对各向异性通量集进行舍入。CHRR可证明收敛到均匀的平稳采样分布。我们将其应用于维度不断增加的代谢网络。我们表明,它的收敛速度比一种流行的人工中心化命中与运行算法快几倍,从而能够对基因组规模生化网络进行可靠且易于处理的采样。
https://github.com/opencobra/cobratoolbox 。
ronan.mt.fleming@gmail.com 或 vempala@cc.gatech.edu 。
补充数据可在《生物信息学》在线获取。