Suppr超能文献

通过催化不对称烯丙基化/氮杂-Prins环化/内酯化序列模块化合成手性桥连哌啶-γ-丁内酯。

Modular access to chiral bridged piperidine-γ-butyrolactones via catalytic asymmetric allylation/aza-Prins cyclization/lactonization sequences.

作者信息

Fu Cong, He Ling, Xu Hui, Zhang Zongpeng, Chang Xin, Dang Yanfeng, Dong Xiu-Qin, Wang Chun-Jiang

机构信息

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.

出版信息

Nat Commun. 2024 Jan 2;15(1):127. doi: 10.1038/s41467-023-44336-2.

Abstract

Chiral functionalized piperidine and lactone heterocycles are widely spread in natural products and drug candidates with promising pharmacological properties. However, there remains no general asymmetric methodologies that enable rapid assemble both critical biologically important units into one three-dimensional chiral molecule. Herein, we describe a straightforward relay strategy for the construction of enantioenriched bridged piperidine-γ-butyrolactone skeletons incorporating three skipped stereocenters via asymmetric allylic alkylation and aza-Prins cyclization/lactonization sequences. The excellent enantioselectivity control in asymmetric allylation with the simplest allylic precursor is enabled by the synergistic Cu/Ir-catalyzed protocol; the success of aza-Prins cyclization/lactonization can be attributed to the pivotal role of the ester substituent, which acts as a preferential intramolecular nucleophile to terminate the aza-Prins intermediacy of piperid-4-yl cation species. The resulting chiral piperidine-γ-butyrolactone bridged-heterocyclic products show impressive preliminary biological activities against a panel of cancer cell lines.

摘要

手性官能化哌啶和内酯杂环广泛存在于具有良好药理特性的天然产物和候选药物中。然而,目前尚无通用的不对称方法能够将这两个关键的生物重要单元快速组装成一个三维手性分子。在此,我们描述了一种直接的接力策略,通过不对称烯丙基烷基化和氮杂-Prins环化/内酯化序列,构建含有三个连续立体中心的对映体富集的桥连哌啶-γ-丁内酯骨架。协同的铜/铱催化方案实现了与最简单的烯丙基前体进行不对称烯丙基化时出色的对映选择性控制;氮杂-Prins环化/内酯化的成功可归因于酯取代基的关键作用,它作为优先的分子内亲核试剂终止了哌啶-4-基阳离子物种的氮杂-Prins中间体。所得的手性哌啶-γ-丁内酯桥连杂环产物对一组癌细胞系显示出令人印象深刻的初步生物活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d834/10762176/e0969cceb024/41467_2023_44336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验