Mishra Anjali, Mishra Gaurav Kumar, Singh Nanhai, Kant Rama, Kumar Kamlesh
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
Department of Chemistry, University of Delhi, Delhi-110007, India.
Dalton Trans. 2024 Jan 23;53(4):1680-1690. doi: 10.1039/d3dt03932c.
With increasing interest in nickel-based electrocatalysts, three heteroleptic Ni(II) dithiolate complexes with the general formula [Ni(II)L(L')] (1-3), L = 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione and L' = triphenylphosphine (1), 1,1'-bis(diphenylphosphino)ferrocene (DPPF) (2), and 1,2-bis(diphenylphosphino)ethane (DPPE) (3), have been synthesized and characterized by various spectroscopic techniques (UV-vis, IR, H, and P{H} NMR) as well as the electrochemical method. The molecular structure of complex 2 has also been determined by single-crystal X-ray crystallography. The crystal structure of complex 2 reveals a distorted square planar geometry around the nickel metal ion with a NiPS core. The cyclic voltammograms reveal a small difference in the redox properties of complexes (Δ° = 130 mV) while the difference in the catalytic half-wave potential becomes substantial (Δ = 670 mV) in the presence of 15 mM CFCOOH. The common S^S-dithiolate ligand provides stability, while the rigidity effect of other ligands (DPPE (3) > DPPF (2) > PPh (1)) regulates the formation of the transition state, resulting in the Ni-H intermediate in the order of 1 > 2 > 3. The foot-of-the-wave analysis supports the widely accepted ECEC mechanism for Ni-based complexes with the first protonation step as a rate-determining step. The electrocatalytic proton reduction activity follows in the order of complex 1 > 2 > 3. The comparatively lower overpotential and higher turnover frequency of complex 1 are attributed to the flexibility of the PPh ligand, which favours the easy formation of a transition state.
随着对镍基电催化剂的兴趣日益增加,合成了三种通式为[Ni(II)L(L')](1 - 3)的杂配Ni(II)二硫醇盐配合物,其中L = 2-(亚甲基-1,1'-二硫醇基)-5,5'-二甲基环己烷-1,3-二酮,L' = 三苯基膦(1)、1,1'-双(二苯基膦基)二茂铁(DPPF)(2)和1,2-双(二苯基膦基)乙烷(DPPE)(3),并通过各种光谱技术(紫外可见光谱、红外光谱、氢谱和磷谱核磁共振)以及电化学方法对其进行了表征。配合物2的分子结构也通过单晶X射线晶体学确定。配合物2的晶体结构揭示了围绕镍金属离子的扭曲平面正方形几何结构,其核心为NiPS。循环伏安图显示配合物的氧化还原性质存在微小差异(Δ° = 130 mV),而在存在15 mM CFCOOH的情况下,催化半波电位的差异变得显著(Δ = 670 mV)。常见的S^S - 二硫醇盐配体提供稳定性,而其他配体的刚性效应(DPPE(3)> DPPF(2)> PPh(1))调节过渡态的形成,导致Ni - H中间体的顺序为1 > 2 > 3。波峰分析支持了广泛接受的镍基配合物的ECEC机制,其中第一步质子化是速率决定步骤。电催化质子还原活性顺序为配合物1 > 2 > 3。配合物1相对较低的过电位和较高的周转频率归因于PPh配体的灵活性,这有利于容易形成过渡态。