Vannan Annika, Lyu Ruqian, Williams Arianna L, Negretti Nicholas M, Mee Evan D, Hirsh Joseph, Hirsh Samuel, Nichols David S, Calvi Carla L, Taylor Chase J, Polosukhin Vasiliy V, Serezani Ana Pm, McCall A Scott, Gokey Jason J, Shim Heejung, Ware Lorraine B, Bacchetta Matthew J, Shaver Ciara M, Blackwell Timothy S, Walia Rajat, Sucre Jennifer Ms, Kropski Jonathan A, McCarthy Davis J, Banovich Nicholas E
Translational Genomics Research Institute, Phoenix, AZ.
St. Vincent's Institute of Medical Research, Fitzroy, VIC, AUS.
bioRxiv. 2023 Dec 17:2023.12.15.571954. doi: 10.1101/2023.12.15.571954.
The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell-types, established the cellular and molecular basis of classical PF histopathologic disease features, and identified a diversity of distinct molecularly-defined spatial niches in control and PF lungs. Using machine-learning and trajectory analysis methods to segment and rank airspaces on a gradient from normal to most severely remodeled, we identified a sequence of compositional and molecular changes that associate with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially-resolved characterization of the cellular and molecular programs of PF and control lungs, provide new insights into the heterogeneous pathobiology of PF, and establish analytical approaches which should be broadly applicable to other imaging-based spatial transcriptomic studies.
人类肺部结构复杂,多种特殊的上皮细胞、基质细胞和免疫细胞在解剖学上不同的位置发挥特定的功能作用,而远端肺结构和细胞组成的大规模变化是肺纤维化(PF)和其他进行性慢性肺病的标志。单细胞转录组学研究揭示了PF肺中众多新出现/富集的细胞类型/状态,但这些细胞促成疾病发病机制的空间背景仍不明确。利用基于亚细胞分辨率图像的空间转录组学,我们分析了来自19个独特肺组织的100多万个细胞的基因表达。通过互补的基于细胞和创新的无细胞分析,我们对PF新出现的细胞类型的定位进行了表征,确立了经典PF组织病理学疾病特征的细胞和分子基础,并在对照肺和PF肺中识别出多种不同的分子定义的空间生态位。使用机器学习和轨迹分析方法,根据从正常到最严重重塑的梯度对气腔进行分割和排序,我们确定了一系列与远端肺进行性病理相关的组成和分子变化,始于肺泡上皮失调,最终以巨噬细胞极化变化为终点。总之,这些结果提供了PF肺和对照肺细胞及分子程序的独特的、空间分辨的表征,为PF的异质性病理生物学提供了新见解,并建立了应广泛适用于其他基于成像的空间转录组学研究的分析方法。
Am J Physiol Lung Cell Mol Physiol. 2023-10-1
Sci Adv. 2024-8-9
Cell Rep. 2022-8-16