Suppr超能文献

空间转录组学鉴定出与肺纤维化中远端肺重塑相关的分子微环境失调。

Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis.

作者信息

Vannan Annika, Lyu Ruqian, Williams Arianna L, Negretti Nicholas M, Mee Evan D, Hirsh Joseph, Hirsh Samuel, Hadad Niran, Nichols David S, Calvi Carla L, Taylor Chase J, Polosukhin Vasiliy V, Serezani Ana P M, McCall A Scott, Gokey Jason J, Shim Heejung, Ware Lorraine B, Bacchetta Matthew J, Shaver Ciara M, Blackwell Timothy S, Walia Rajat, Sucre Jennifer M S, Kropski Jonathan A, McCarthy Davis J, Banovich Nicholas E

机构信息

Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA.

St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.

出版信息

Nat Genet. 2025 Mar;57(3):647-658. doi: 10.1038/s41588-025-02080-x. Epub 2025 Feb 3.

Abstract

Large-scale changes in the structure and cellular makeup of the distal lung are a hallmark of pulmonary fibrosis (PF), but the spatial contexts that contribute to disease pathogenesis have remained uncertain. Using image-based spatial transcriptomics, we analyzed the gene expression of 1.6 million cells from 35 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell types, established the cellular and molecular basis of classical PF histopathologic features and identified a diversity of distinct molecularly defined spatial niches in control and PF lungs. Using machine learning and trajectory analysis to segment and rank airspaces on a gradient of remodeling severity, we identified compositional and molecular changes associated with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially resolved view of PF and establish methods that could be applied to other spatial transcriptomic studies.

摘要

远端肺结构和细胞组成的大规模变化是肺纤维化(PF)的一个标志,但导致疾病发病机制的空间背景仍不确定。利用基于图像的空间转录组学,我们分析了来自35个独特肺脏的160万个细胞的基因表达。通过基于细胞的互补分析和创新的细胞无关分析,我们对PF相关细胞类型的定位进行了表征,建立了经典PF组织病理学特征的细胞和分子基础,并在对照和PF肺中确定了多种不同的分子定义空间生态位。利用机器学习和轨迹分析,根据重塑严重程度梯度对气腔进行分割和排序,我们确定了与进行性远端肺病理相关的组成和分子变化,始于肺泡上皮失调,最终以巨噬细胞极化变化告终。总之,这些结果提供了一个独特的、空间解析的PF视图,并建立了可应用于其他空间转录组学研究的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a21/11906353/ccae5fa8cf2f/41588_2025_2080_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验