使用单导联心电图估算呼吸频率的开源软件。

Open-source software for respiratory rate estimation using single-lead electrocardiograms.

机构信息

Departments of Anesthesia, Pediatrics, and Medicine, Massachusetts General Hospital, Boston, MA, USA.

IHU-LIRYC, Heart Rhythm Disease Institute, Fondation Bordeaux Université, 33600, Pessac, Bordeaux, France.

出版信息

Sci Rep. 2024 Jan 2;14(1):167. doi: 10.1038/s41598-023-50470-0.

Abstract

Respiratory rate (RR) is a critical vital sign used to assess pulmonary function. Currently, RR estimating instrumentation is specialized and bulky, therefore unsuitable for remote health monitoring. Previously, RR was estimated using proprietary software that extract surface electrocardiogram (ECG) waveform features obtained at several thoracic locations. However, developing a non-proprietary method that uses minimal ECG leads, generally available from mobile cardiac monitors is highly desirable. Here, we introduce an open-source and well-documented Python-based algorithm that estimates RR requiring only single-stream ECG signals. The algorithm was first developed using ECGs from awake, spontaneously breathing adult human subjects. The algorithm-estimated RRs exhibited close linear correlation to the subjects' true RR values demonstrating an R of 0.9092 and root mean square error of 2.2 bpm. The algorithm robustness was then tested using ECGs generated by the ischemic hearts of anesthetized, mechanically ventilated sheep. Although the ECG waveforms during ischemia exhibited severe morphologic changes, the algorithm-determined RRs exhibited high fidelity with a resolution of 1 bpm, an absolute error of 0.07 ± 0.07 bpm, and a relative error of 0.67 ± 0.64%. This optimized Python-based RR estimation technique will likely be widely adapted for remote lung function assessment in patients with cardiopulmonary disease.

摘要

呼吸频率 (RR) 是用于评估肺功能的重要生命体征。目前,RR 估计仪器专业性强且体积庞大,因此不适合远程健康监测。以前,RR 是使用专有的软件来估计的,该软件提取了从几个胸部位置获得的体表心电图 (ECG) 波形特征。然而,开发一种使用移动心脏监测器上通常可获得的最少导联的非专用方法是非常需要的。在这里,我们引入了一个基于 Python 的开源和记录完善的算法,该算法仅使用单导联 ECG 信号来估计 RR。该算法最初是使用清醒、自主呼吸的成年人类受试者的 ECG 开发的。算法估计的 RR 与受试者的真实 RR 值表现出密切的线性相关性,证明 R 为 0.9092,均方根误差为 2.2 bpm。然后使用麻醉、机械通气的绵羊缺血心脏产生的 ECG 测试算法的稳健性。尽管在缺血期间 ECG 波形表现出严重的形态变化,但算法确定的 RR 具有高保真度,分辨率为 1 bpm,绝对误差为 0.07 ± 0.07 bpm,相对误差为 0.67 ± 0.64%。这种优化的基于 Python 的 RR 估计技术可能会被广泛应用于心肺疾病患者的远程肺功能评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索