Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA.
Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA.
J Virol. 2024 Jan 23;98(1):e0151023. doi: 10.1128/jvi.01510-23. Epub 2024 Jan 3.
The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin (mACE2) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2 mice, we generated and cloned a more virulent virus. A single isolate (SARS2) was prepared for detailed studies. In 7-11-month-old mACE2 mice, a 10 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.
新型冠状病毒病(COVID-19)大流行继续造成非凡的生命损失和经济破坏。需要严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)感染的动物模型,以更好地了解疾病发病机制,并评估预防措施和疗法。虽然小鼠广泛用于模拟人类疾病,但小鼠血管紧张素转换酶 2(ACE2)不能结合原始 SARS-CoV-2 刺突蛋白来介导病毒进入。为了克服这一限制,我们使用 CRISPR 基因编辑对小鼠进行“人源化”,引入一个预测有助于 S 蛋白结合的单一氨基酸取代 H353K。虽然 H353K 敲入(mACE2)小鼠支持 SARS-CoV-2 感染和复制,但它们表现出最小的疾病症状。在 mACE2 小鼠中进行了 30 代原始 SARS-CoV-2 的连续传代后,我们生成并克隆了一种更具毒力的病毒。一个单独的分离株(SARS2)被制备用于详细研究。在 7-11 月龄的 mACE2 小鼠中,10 个 PFU 接种量导致弥漫性肺泡疾病,表现为水肿、透明膜形成和间质细胞浸润/增厚。出乎意料的是,这种适应小鼠的病毒也感染了标准的 BALB/c 和 C57BL/6 小鼠,并导致严重疾病。适应小鼠的病毒获得了五个新的错义突变,包括两个在刺突蛋白(K417E、Q493K),一个在 nsp4、nsp9 和 M,以及一个在 5'非翻译区的单个核苷酸变化。刺突蛋白中的 Q493K 突变在连续传代中很早就出现了,据预测,它与 mACE2 提供了增强亲和力的分子相互作用,进一步提高了与受体的稳定性和亲和力。这种新模型和适应小鼠的病毒将有助于评估 COVID-19 疾病以及预防和治疗干预措施。
重要性:
我们开发了一种新型小鼠模型,其血管紧张素转换酶 2(ACE2)基因座具有人类化,保留了天然的调节元件。小鼠 ACE2 中的单个点突变(H353K)足以赋予对原始严重急性呼吸系统综合征冠状病毒-2 病毒的感染能力。通过连续传代,获得了一种毒力更强的适应小鼠的毒株。在老年 mACE2H353K 小鼠中,适应小鼠的毒株引起弥漫性肺泡疾病。适应小鼠的病毒还感染了标准的 BALB/c 和 C57BL/6 小鼠,导致严重疾病。适应小鼠的病毒获得了五个新的错义突变,包括两个在刺突蛋白(K417E、Q493K),一个在 nsp4、nsp9 和 M,以及一个在 5'非翻译区的单个核苷酸变化。刺突蛋白中的 Q493K 突变在连续传代中很早就出现了,据预测,它与 mACE2 提供了增强亲和力的分子相互作用,进一步提高了与受体的稳定性和亲和力。这种新模型和适应小鼠的病毒将有助于评估 COVID-19 疾病以及预防和治疗干预措施。