Suppr超能文献

在丁二炔桥连的供体-桥-受体化合物中利用中红外进行电子转移速率调制。

Electron transfer rate modulation with mid-IR in butadiyne-bridged donor-bridge-acceptor compounds.

作者信息

Mendis Kasun C, Li Xiao, Valdiviezo Jesús, Banziger Susannah D, Zhang Peng, Ren Tong, Beratan David N, Rubtsov Igor V

机构信息

Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

Phys Chem Chem Phys. 2024 Jan 17;26(3):1819-1828. doi: 10.1039/d3cp03175f.

Abstract

Controlling electron transfer (ET) processes in donor-bridge-acceptor (DBA) compounds by mid-IR excitation can enhance our understanding of the ET dynamics and may find practical applications in molecular sensing and molecular-scale electronics. Alkyne moieties are attractive to serve as ET bridges, as they offer the possibility of fast ET and present convenient vibrational modes to perturb the ET dynamics. Yet, these bridges introduce complexity because of the strong torsion angle dependence of the ET rates and transition dipoles among electronic states and a shallow torsion barrier. In this study, we implemented ultrafast 3-pulse laser spectroscopy to investigate how the ET from the dimethyl aniline (D) electron donor to the -isopropyl-1,8-napthalimide (NAP) electron acceptor can be altered by exciting the CC stretching mode () of the butadiyne bridge linking the donor and acceptor. The electron transfer was initiated by electronically exciting the acceptor moiety at 400 nm, followed by vibrational excitation of the alkyne, , and detecting the changes in the absorption spectrum in the visible spectral region. The experiments were performed at different delay times and , which are the delays between UV-mid-IR and mid-IR-Vis pulses, respectively. Two sets of torsion-angle conformers were identified, one featuring a very fast mean ET time of 0.63 ps (group A) and another featuring a slower mean ET time of 4.3 ps (group B), in the absence of the mid-IR excitation. TD-DFT calculations were performed to determine key torsion angle dependent molecular parameters, including the electronic and vibrational transition dipoles, transition frequencies, and electronic couplings. To describe the 3-pulse data, we developed a kinetic model that includes a locally excited, acceptor-based S2 state, a charge separated S1 state, and their vibrationally excited counterparts, with either excited (denoted as S1A, S1B, S2A, and S2B, where tr stands for the excited triplet bond, ) or excited daughter modes of the relaxation (S1A, S1B, S2A, and S2B, where h stands for vibrationally hot species). The kinetic model was solved analytically, and the species-associated spectra (SAS) were determined numerically using a matrix approach, treating first the experiments with longer delays and then using the already determined SAS for modeling the experiments with shorter delays. Strong vibronic coupling of and of vibrationally hot states makes the analysis complicated. Nevertheless, the SAS were identified and the ET rates of the vibrationally excited species, S2A, S2B and S2B, were determined. The results show that the ET rate for the S2A species is 1.2-fold slower when the mode is excited. The ET rate for species S2B is slower by 1.3-fold if the compound is vibrationally hot and is essentially unchanged when the mode is excited. The SAS determined for the tr and h species resemble the SAS for their respective precursor species in the 2-pulse transient absorption experiments, which validates the procedure used and the results.

摘要

通过中红外激发来控制供体-桥-受体(DBA)化合物中的电子转移(ET)过程,能够增进我们对ET动力学的理解,并可能在分子传感和分子尺度电子学中找到实际应用。炔基部分作为ET桥很有吸引力,因为它们提供了快速ET的可能性,并呈现出方便的振动模式来扰动ET动力学。然而,由于ET速率和电子态之间的跃迁偶极矩对扭转角有很强的依赖性以及扭转势垒较浅,这些桥引入了复杂性。在本研究中,我们采用超快三脉冲激光光谱来研究,通过激发连接供体和受体的丁二炔桥的C≡C拉伸模式(ν),从二甲基苯胺(D)电子供体到对异丙基-1,8-萘二甲酰亚胺(NAP)电子受体的ET如何被改变。电子转移通过在400nm处对受体部分进行电子激发来启动,随后对炔烃(ν)进行振动激发,并检测可见光谱区域吸收光谱的变化。实验在不同的延迟时间τ1和τ2下进行,它们分别是紫外-中红外和中红外-可见脉冲之间的延迟。在没有中红外激发的情况下,识别出了两组扭转角构象异构体,一组的平均ET时间非常快,为0.63ps(A组),另一组的平均ET时间较慢,为4.3ps(B组)。进行了含时密度泛函理论(TD-DFT)计算,以确定关键的与扭转角相关的分子参数,包括电子和振动跃迁偶极矩、跃迁频率以及电子耦合。为了描述三脉冲数据,我们开发了一个动力学模型,该模型包括一个局域激发态(基于受体的S2态)、一个电荷分离的S1态以及它们的振动激发对应态,其中要么是激发的ν(表示为S1A、S1B、S2A和S2B,其中tr表示激发的三重键),要么是ν弛豫的激发子模式(S1A、S1B、S2A和S2B,其中h表示振动热物种)。对动力学模型进行了解析求解,并使用矩阵方法通过数值确定了与物种相关的光谱(SAS),首先处理具有较长τ2延迟的实验,然后使用已经确定的SAS对具有较短τ2延迟的实验进行建模。ν和振动热态的强振动电子耦合使得分析变得复杂。尽管如此,还是识别出了SAS,并确定了振动激发物种S2A、S2B和S2B的ET速率。结果表明,当ν模式被激发时,S2A物种的ET速率慢1.2倍。如果化合物处于振动热态,S2B物种的ET速率慢1.3倍,而当ν模式被激发时基本不变。为tr和h物种确定的SAS类似于在二脉冲瞬态吸收实验中其各自前体物种的SAS,这验证了所使用的程序和结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验