Luo Wan, Baskaran Aparna, Pelcovits Robert A, Powers Thomas R
School of Engineering, Brown University, Providence, RI 02912, USA.
Center for Fluid Mechanics, Brown University, Providence, RI 02912, USA.
Soft Matter. 2024 Jan 24;20(4):738-753. doi: 10.1039/d3sm00919j.
Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow of active gels in straight and annular two-dimensional channels subject to an externally imposed shear. The gels are isotropic in the absence of externally- or activity-driven shear, but have nematic order that increases with shear rate. Using the finite element method, we determine the possible flow states for a range of activities and shear rates. Linear stability analysis of an unconfined gel in a straight channel shows that an externally imposed shear flow can stabilize an extensile fluid that would be unstable to spontaneous flow in the absence of the shear flow, and destabilize a contractile fluid that would be stable against spontaneous flow in the absence of shear flow. These results are in rough agreement with the stability boundaries between the base shear flow state and the nonlinear flow states that we find numerically for a confined active gel. For extensile fluids, we find three kinds of nonlinear flow states in the range of parameters we study: unidirectional flows, oscillatory flows, and dancing flows. To highlight the activity-driven spontaneous component of the nonlinear flows, we characterize these states by the average volumetric flow rate and the wall stress. For contractile fluids, we only find the linear shear flow and a nonlinear unidirectional flow in the range of parameters that we studied. For large magnitudes of the activity, the unidirectional contractile flow develops a boundary layer. Our analysis of annular channels shows how curvature of the streamlines in the base flow affects the transitions among flow states.
我们使用一个最小化的流体动力学模型,从理论和计算两方面研究了活性凝胶在直的和环形二维通道中的库埃特流,这些通道受到外部施加的剪切力作用。在没有外部或活性驱动剪切力的情况下,凝胶是各向同性的,但具有随剪切速率增加的向列相序。我们使用有限元方法确定了一系列活性和剪切速率下可能的流动状态。对直通道中无约束凝胶的线性稳定性分析表明,外部施加的剪切流可以使一种拉伸流体稳定,而这种流体在没有剪切流时会因自发流动而不稳定;同时,它会使一种收缩流体不稳定,而这种流体在没有剪切流时对自发流动是稳定的。这些结果与我们在数值上发现的受限活性凝胶的基剪切流状态和非线性流动状态之间的稳定性边界大致相符。对于拉伸流体,在我们研究的参数范围内,我们发现了三种非线性流动状态:单向流动、振荡流动和舞动流动。为了突出非线性流动中活性驱动的自发成分,我们用平均体积流率和壁面应力来表征这些状态。对于收缩流体,在我们研究的参数范围内,我们只发现了线性剪切流和一种非线性单向流动。对于较大的活性值,单向收缩流会形成一个边界层。我们对环形通道的分析表明了基流中流线的曲率如何影响流动状态之间的转变。