Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
Géosciences Environnement Toulouse (GET), CNRS UMR 5563, UPS-IRD-CNES 14-16, Avenue Edouard Belin, 31400, Toulouse, France.
Environ Sci Process Impacts. 2024 Feb 21;26(2):344-356. doi: 10.1039/d3em00332a.
Despite the importance of structural control on metal stable isotope fractionation in inorganic and abiotic systems, the link between metal structural changes and related isotopic fractionation during reactions with organic surfaces and live cells remains poorly established. We conducted reversible adsorption of Fe(II) and Fe(III) on the surface of exopolysaccharide (EPS)-rich and EPS-poor , and we allowed Fe intracellular uptake by growing cells. We analyzed the Fe isotopic composition of the remaining fluid and cell biomass, and compared the isotopic fractionation during adsorption and assimilation reaction with relative changes in Fe structural status between aqueous solution and bacterial cells, based on available and newly collected X-ray absorption spectroscopy (XAS) observations. Iron(III) adsorption onto at 2.8 ≤ pH ≤ 6.0 produced an enrichment of the cell surface in heavier isotopes with ΔFe ranging from +0.7 to +2.1‰, without a link to pH in EPS-rich cultures. In contrast, the magnitude of isotopic fractionation increased with pH in EPS-poor cultures. Iron(II) adsorption produced an even larger enrichment of the cell surface in heavier isotopes, by up to 3.2‰, tentatively linked to Fe(III) hydroxide precipitation. Intracellular assimilation of Fe(II) favored heavier isotopes and led to ΔFe of +0.8‰. In addition, Fe(III) cellular uptake produced an enrichment of the bacterial biomass in lighter isotopes with ΔFe of -1‰. The XAS analyses demonstrated the dominance of Fe(III)-phosphate complexes both at the cell surface and in the cell interior. We suggest that heavier isotope enrichment of the cell surface relative to the aqueous solution is due to strong Fe(III)-phosphoryl surface complexes and Fe complexation to ligands responsible for metal transfer from the surface to the inner cell. In case of Fe(II) adsorption or assimilation, its partial oxidation within the cell compartments may lead to cell enrichment in heavier isotopes. In contrast, loss of symmetry of assimilated Fe(III) relative to the aqueous Fe ion and longer bonds of intracellular ions relative to aqueous Fe(III)-citrate or hydroxo-complexes could produce an enrichment of cells in lighter isotopes. The versatile nature of Fe(II) and Fe(III) fractionation without a distinct effect of pH and surface exopolysaccharide coverage suggests that, in natural soil and sedimentary environments, Fe isotope fractionation during interaction with heterotrophic bacteria will be primarily governed by Fe complexation with DOM and Fe redox status in the soil pore water.
尽管结构控制对无机和非生物系统中金属稳定同位素分馏具有重要意义,但金属结构变化与有机表面和活细胞反应过程中相关同位素分馏之间的联系仍未得到充分确立。我们进行了 Fe(II)和 Fe(III)在富含胞外多糖 (EPS)和贫 EPS 的表面上的可逆吸附,并允许生长细胞摄取 Fe 进入细胞内。我们分析了剩余流体和细胞生物量的 Fe 同位素组成,并根据现有的和新收集的 X 射线吸收光谱 (XAS)观察结果,比较了吸附和同化反应过程中的同位素分馏与水溶液和细菌细胞之间 Fe 结构状态的相对变化。在 2.8≤pH≤6.0 时,Fe(III)吸附到 上会导致细胞表面对较重同位素的富集,ΔFe 范围为+0.7 到+2.1‰,与富 EPS 培养物中的 pH 无关。相比之下,在贫 EPS 培养物中,同位素分馏的幅度随 pH 增大而增大。Fe(II)吸附会导致细胞表面对较重同位素的富集更大,最高可达 3.2‰,这可能与 Fe(III)氢氧化物沉淀有关。细胞内 Fe(II)同化有利于较重同位素,导致 ΔFe 为+0.8‰。此外,Fe(III)细胞摄取会导致细菌生物量对较轻同位素的富集,ΔFe 为-1‰。XAS 分析表明,在细胞表面和细胞内部都以 Fe(III)-磷酸盐配合物为主。我们认为,细胞表面相对于水溶液的较重同位素富集是由于强 Fe(III)-磷酸表面配合物和 Fe 与配体的络合,这些配体负责将金属从表面转移到细胞内部。对于 Fe(II)吸附或同化,其在细胞隔室中的部分氧化可能导致细胞对较重同位素的富集。相比之下,与水溶液中的 Fe 离子相比,同化的 Fe(III)对称性的丧失以及细胞内离子与水溶液中的 Fe(III)-柠檬酸或氢氧化物络合物相比键长的增加可能导致细胞对较轻同位素的富集。Fe(II)和 Fe(III)分馏的多样性而没有 pH 和表面 EPS 覆盖的明显影响表明,在自然土壤和沉积物环境中,与异养细菌相互作用过程中的 Fe 同位素分馏将主要受 DOM 与 Fe 的络合以及土壤孔隙水中的 Fe 氧化还原状态控制。