Yin Nang-Htay, Louvat Pascale, Thibault-DE-Chanvalon Aubin, Sebilo Mathieu, Amouroux David
Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
Chemosphere. 2023 Mar;316:137802. doi: 10.1016/j.chemosphere.2023.137802. Epub 2023 Jan 11.
Iron is geologically important and biochemically crucial for all microorganisms, plants and animals due to its redox exchange, the involvement in electron transport and metabolic processes. Despite the abundance of iron in the earth crust, its bioavailability is very limited in nature due to its occurrence as ferrihydrite, goethite, and hematite where they are thermodynamically stable with low dissolution kinetics in neutral or alkaline environments. Organisms such as bacteria, fungi, and plants have evolved iron acquisition mechanisms to increase its bioavailability in such environments, thereby, contributing largely to the iron cycle in the environment. Biogeochemical cycling of metals including Fe in natural systems usually results in stable isotope fractionation; the extent of fractionation depends on processes involved. Our review suggests that significant fractionation of iron isotopes occurs in low-temperature environments, where the extent of fractionation is greatly governed by several biogeochemical processes such as redox reaction, alteration, complexation, adsorption, oxidation and reduction, with or without the influence of microorganisms. This paper includes relevant data sets on the theoretical calculations, experimental prediction, as well as laboratory studies on stable iron isotopes fractionation induced by different biogeochemical processes.
由于铁的氧化还原交换、参与电子传递和代谢过程,它在地质上具有重要意义,并且对所有微生物、植物和动物的生物化学过程都至关重要。尽管地壳中铁含量丰富,但由于其以三水铁矿、针铁矿和赤铁矿的形式存在,在中性或碱性环境中热力学稳定且溶解动力学较低,其生物可利用性在自然界中非常有限。细菌、真菌和植物等生物已经进化出铁获取机制,以增加其在这种环境中的生物可利用性,从而在很大程度上促进了环境中的铁循环。包括铁在内的金属在自然系统中的生物地球化学循环通常会导致稳定同位素分馏;分馏程度取决于所涉及的过程。我们的综述表明,铁同位素的显著分馏发生在低温环境中,其中分馏程度在很大程度上受氧化还原反应、蚀变、络合、吸附、氧化和还原等几种生物地球化学过程的控制,无论是否有微生物的影响。本文包括有关理论计算、实验预测以及不同生物地球化学过程诱导的稳定铁同位素分馏的实验室研究的相关数据集。