Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México.
PLoS One. 2024 Jan 3;19(1):e0295283. doi: 10.1371/journal.pone.0295283. eCollection 2024.
Symbiotic corals display a great array of morphologies, each of which has unique effects on light interception and the photosynthetic performance of in hospite zooxanthellae. Changes in light availability elicit photoacclimation responses to optimize the energy balances in primary producers, extensively documented for corals exposed to contrasting light regimes along depth gradients. Yet, response variation driven by coral colony geometry and its energetic implications on colonies with contrasting morphologies remain largely unknown. In this study, we assessed the effect of the inclination angle of coral surface on light availability, short- and long-term photoacclimation responses, and potential photosynthetic usable energy. Increasing surface inclination angle resulted in an order of magnitude reduction of light availability, following a linear relationship explained by the cosine law and relative changes in the direct and diffuse components of irradiance. The light gradient induced by surface geometry triggered photoacclimation responses comparable to those observed along depth gradients: changes in the quantum yield of photosystem II, photosynthetic parameters, and optical properties and pigmentation of the coral tissue. Differences in light availability and photoacclimation driven by surface inclination led to contrasting energetic performance. Horizontally and vertically oriented coral surfaces experienced the largest reductions in photosynthetic usable energy as a result of excessive irradiance and light-limiting conditions, respectively. This pattern is predicted to change with depth or local water optical properties. Our study concludes that colony geometry plays an essential role in shaping the energy balance and determining the light niche of zooxanthellate corals.
共生珊瑚表现出丰富多样的形态,每种形态都对光捕获和共生虫黄藻的光合作用性能有独特的影响。光照可用性的变化会引发光驯化反应,以优化初级生产者的能量平衡,这在珊瑚暴露于深度梯度上不同光照条件下的情况中得到了广泛的记录。然而,珊瑚群体几何形状驱动的响应变化及其对具有不同形态的群体的能量影响在很大程度上仍然未知。在这项研究中,我们评估了珊瑚表面倾斜角度对光可用性、短期和长期光驯化响应以及潜在光合作用可用能量的影响。随着表面倾斜角度的增加,光可用性呈数量级降低,这遵循余弦定律解释的线性关系以及辐照度的直射和漫射分量的相对变化。表面几何形状引起的光梯度引发了与沿深度梯度观察到的类似的光驯化响应:光合作用系统 II 的量子产量、光合作用参数以及珊瑚组织的光学特性和色素的变化。由表面倾斜引起的光可用性和光驯化的差异导致了能量表现的差异。水平和垂直取向的珊瑚表面由于过度辐照度和光限制条件,经历了最大的光合作用可用能量减少。这种模式预计会随深度或局部水光学性质而变化。我们的研究结论是,群体几何形状在塑造能量平衡和确定共生珊瑚的光生态位方面起着至关重要的作用。