验证日本普通人群中小而密的低密度脂蛋白胆固醇浓度的估算值。
Validation of Estimated Small Dense Low-Density Lipoprotein Cholesterol Concentration in a Japanese General Population.
机构信息
Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.
Division of Laboratory Medicine, Sapporo Medical University Hospital.
出版信息
J Atheroscler Thromb. 2024 Jun 1;31(6):931-952. doi: 10.5551/jat.64578. Epub 2023 Dec 29.
AIM
A high level of directly measured small dense low-density lipoprotein cholesterol (sdLDL-C) is a strong risk factor for atherosclerotic cardiovascular disease. A method for estimating sdLDL-C by using Sampson's equation that includes levels of total cholesterol, high-density lipoprotein cholesterol (HDL-C), non-HDL-C and triglycerides (TG) has recently been proposed. We investigated the validation and exploration of estimated sdLDL-C level.
METHODS
The associations between measured and estimated sdLDL-C levels were investigated in 605 Japanese subjects (men/women: 280/325; mean age: 65±15 years) who received annual health check-ups in the Tanno-Sobetsu Study, a population-based cohort.
RESULTS
Estimated sdLDL-C level was highly correlated with measured sdLDL-C level in all subjects (R=0.701), nondiabetic subjects without any medication (n=254, R=0.686) and subjects with diabetes mellitus (n=128, R=0.721). Multivariable regression analysis showed that levels of non-HDL-C, TG and γ-glutamyl transpeptidase (γGTP) were independent predictors of measured sdLDL-C level. In a stratification of the LDL window, all of the subjects with a combination of high non-HDL-C (≥ 170 mg/dL) and high TG (≥ 150 mg/dL) had high levels of measured and estimated sdLDL-C (≥ 35 mg/dL). Furthermore, machine learning-based estimation of sdLDL-C level by artificial intelligence software, Prediction One, was substantially improved by using components of Sampson's equation (R=0.803) and by using those components with the addition of γGTP and deletion of TC (R=0.929).
CONCLUSIONS
sdLDL-C level estimated by Sampson's equation can be used instead of measured sdLDL-C level in general practice. By building multiple machine learning models of artificial intelligence, a more accurate and practical estimation of sdLDL-C level might be possible.
目的
直接测量的小而密低密度脂蛋白胆固醇(sdLDL-C)水平较高是动脉粥样硬化性心血管疾病的一个强烈危险因素。最近提出了一种通过使用包含总胆固醇、高密度脂蛋白胆固醇(HDL-C)、非高密度脂蛋白胆固醇和甘油三酯(TG)水平的 Sampson 方程来估计 sdLDL-C 的方法。我们研究了估计的 sdLDL-C 水平的验证和探索。
方法
在接受田沼-砂布津研究(一项基于人群的队列研究)年度健康检查的 605 名日本受试者(男性/女性:280/325;平均年龄:65±15 岁)中,研究了测量的和估计的 sdLDL-C 水平之间的关联。
结果
在所有受试者(R=0.701)、无任何药物治疗的非糖尿病受试者(n=254,R=0.686)和糖尿病患者(n=128,R=0.721)中,估计的 sdLDL-C 水平与测量的 sdLDL-C 水平高度相关。多变量回归分析显示,非高密度脂蛋白胆固醇、TG 和γ-谷氨酰转肽酶(γGTP)水平是非测量的 sdLDL-C 水平的独立预测因子。在 LDL 窗口的分层中,所有同时具有高非高密度脂蛋白胆固醇(≥170mg/dL)和高 TG(≥150mg/dL)的受试者均具有高测量和估计的 sdLDL-C(≥35mg/dL)水平。此外,通过人工智能软件 Prediction One 基于机器学习的 sdLDL-C 水平估计,通过使用 Sampson 方程的成分(R=0.803)并通过使用这些成分加上γGTP 并删除 TC(R=0.929),可以得到显著改善。
结论
Sampson 方程估计的 sdLDL-C 水平可在一般实践中替代测量的 sdLDL-C 水平。通过构建多个人工智能的机器学习模型,可能可以更准确和实用地估计 sdLDL-C 水平。