Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.
Mol Neurobiol. 2024 Aug;61(8):5142-5160. doi: 10.1007/s12035-023-03897-5. Epub 2024 Jan 3.
Alzheimer's disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus-a complex brain structure with a pivotal role in learning and memory-is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice-a model of AD-and to determine the impact of Aβ40 and Aβ42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood-brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aβ40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aβ42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer's disease.
阿尔茨海默病(AD)的特征是脑实质和脑内血管壁中聚集的淀粉样肽的积累。海马体——一种在学习和记忆中起关键作用的复杂脑结构——与这种疾病有关。然而,在这种易感结构的 AD 病理变性过程中,关于血管变化的资料有限,该结构具有独特的血管特征。我们的目的是评估 AD 患者和 AD 模型 PDAPP-J20 小鼠的海马体中的血管改变,并确定 Aβ40 和 Aβ42 对内皮细胞激活的影响。我们发现,与非 AD 供体相比,AD 个体的海马体中星形胶质细胞-内皮细胞相互作用丧失,血管密度降低。PDAPP-J20 小鼠的星形胶质细胞-内皮细胞相互作用和紧密连接蛋白 occludin 的水平发生改变,早于这些小鼠出现形态变化或血脑屏障破坏的任何迹象。在后期,PDAPP-J20 小鼠的海马体中血管密度降低,荧光示踪剂渗漏,表明血管和血脑屏障功能障碍。体外研究表明,可溶性 Aβ40 暴露于人脑血管内皮细胞(HBMEC)足以诱导 NFκB 向核内易位,这可能与观察到的 occludin 水平降低有关。膜型晚期糖基化终产物受体(RAGE)的抑制可防止 HBMEC 发生这些变化。其他结果表明,Aβ42 通过诱导星形胶质细胞因子间接影响内皮细胞。此外,我们从人和鼠脑样本中获得的结果为海马体血管在阿尔茨海默病中的关键作用提供了证据。