文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用源自自然资源的荧光碳量子点,通过机器学习算法推进汗潜指纹识别,以增强人类识别能力。

Harnessing fluorescent carbon quantum dots from natural resource for advancing sweat latent fingerprint recognition with machine learning algorithms for enhanced human identification.

机构信息

Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, India.

Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, India.

出版信息

PLoS One. 2024 Jan 4;19(1):e0296270. doi: 10.1371/journal.pone.0296270. eCollection 2024.


DOI:10.1371/journal.pone.0296270
PMID:38175842
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10766178/
Abstract

Nowadays, it is fascinating to engineer waste biomass into functional valuable nanomaterials. We investigate the production of hetero-atom doped carbon quantum dots (N-S@MCDs) to address the adaptability constraint in green precursors concerning the contents of the green precursors i.e., Tagetes erecta (marigold extract). The successful formation of N-S@MCDs as described has been validated by distinct analytical characterizations. As synthesized N-S@MCDs successfully incorporated on corn-starch powder, providing a nano-carbogenic fingerprint powder composition (N-S@MCDs/corn-starch phosphors). N-S@MCDs imparts astounding color-tunability which enables highly fluorescent fingerprint pattern developed on different non-porous surfaces along with immediate visual enhancement under UV-light, revealing a bright sharp fingerprint, along with long-time preservation of developed fingerprints. The creation and comparison of latent fingerprints (LFPs) are two key research in the recognition and detection of LFPs, respectively. In this work, developed fingerprints are regulated with an artificial intelligence program. The optimum sample has a very high degree of similarity with the standard control, as shown by the program's good matching score (86.94%) for the optimal sample. Hence, our results far outperform the benchmark attained using the conventional method, making the N-S@MCDs/corn-starch phosphors and the digital processing program suitable for use in real-world scenarios.

摘要

如今,将废生物质工程化为具有功能的有价值的纳米材料是一件很有趣的事情。我们研究了杂原子掺杂碳量子点(N-S@MCDs)的生产,以解决绿色前体中绿色前体含量的适应性限制问题,即 Tagetes erecta(万寿菊提取物)。通过不同的分析特性验证了所描述的 N-S@MCDs 的成功形成。合成的 N-S@MCDs 成功地掺入到玉米淀粉粉末中,提供了一种纳米碳质指纹粉末成分(N-S@MCDs/corn-starch 荧光粉)。N-S@MCDs 赋予了令人惊讶的颜色可调性,使在不同非多孔表面上开发的高荧光指纹图案得以实现,同时在紫外光下立即增强视觉效果,显示出明亮锐利的指纹,以及开发后的指纹的长时间保存。潜指纹(LFPs)的创建和比较分别是 LFPs 识别和检测的两个关键研究。在这项工作中,开发的指纹由人工智能程序进行调节。最佳样本与标准对照具有非常高的相似度,程序对最佳样本的匹配得分(86.94%)非常好。因此,我们的结果远远超过了使用传统方法获得的基准,使 N-S@MCDs/corn-starch 荧光粉和数字处理程序适用于实际场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/2ddbc939ded3/pone.0296270.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/c1cda7a6491e/pone.0296270.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/7aa79887c278/pone.0296270.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/f13bdca70da5/pone.0296270.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/e7e4c5f85ded/pone.0296270.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/7d6d278fba1f/pone.0296270.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/914ff07ccad3/pone.0296270.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/cbf34aaf2de5/pone.0296270.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/148015c61a55/pone.0296270.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/70f94b9b0c50/pone.0296270.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/294e675030c9/pone.0296270.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/b4cef76d2c75/pone.0296270.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/2ddbc939ded3/pone.0296270.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/c1cda7a6491e/pone.0296270.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/7aa79887c278/pone.0296270.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/f13bdca70da5/pone.0296270.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/e7e4c5f85ded/pone.0296270.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/7d6d278fba1f/pone.0296270.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/914ff07ccad3/pone.0296270.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/cbf34aaf2de5/pone.0296270.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/148015c61a55/pone.0296270.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/70f94b9b0c50/pone.0296270.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/294e675030c9/pone.0296270.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/b4cef76d2c75/pone.0296270.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/10766178/2ddbc939ded3/pone.0296270.g012.jpg

相似文献

[1]
Harnessing fluorescent carbon quantum dots from natural resource for advancing sweat latent fingerprint recognition with machine learning algorithms for enhanced human identification.

PLoS One. 2024

[2]
Red Fluorescent Carbon Dot Powder for Accurate Latent Fingerprint Identification using an Artificial Intelligence Program.

ACS Appl Mater Interfaces. 2020-6-16

[3]
Highly Sensitive Fingerprint Detection under UV Light on Non-Porous Surface Using Starch-Powder Based Luminol-Doped Carbon Dots (N-CDs) from Tender Coconut Water as a Green Carbon Source.

Nanomaterials (Basel). 2022-1-26

[4]
Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs.

Anal Chem. 2014-3-14

[5]
Improving Minutiae Image of Latent Fingerprint Detection on Non-Porous Surface Materials under UV Light Using Sulfur Doped Carbon Quantum Dots from Magnolia Grandiflora Flower.

Nanomaterials (Basel). 2022-9-21

[6]
Pristine Graphic Carbon Nitride Quantum Dots for the Visualized Detection of Latent Fingerprints.

Anal Sci. 2021-11-10

[7]
The Recognition of Sweat Latent Fingerprints with Green-Emitting Carbon Dots.

Nanomaterials (Basel). 2018-8-12

[8]
Development of Natural Luminescent Powder for the Detection of Latent Fingerprint.

Pak J Biol Sci. 2021-1

[9]
A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

Forensic Sci Int. 2015-12

[10]
Metal formate framework-assisted solid fluorescent material based on carbonized nanoparticles for the detection of latent fingerprints.

Anal Chim Acta. 2022-5-29

引用本文的文献

[1]
Synthesis, In-Silico Molecular Docking Studies, and In-Vitro Antimicrobial Evaluation of Isatin Scaffolds bearing 1, 2, 3-Triazoles using Click Chemistry.

Indian J Microbiol. 2025-3

[2]
Nanobiotic Formulations utilizing Quinoline-based-Triazole functionalized Carbon Quantum Dots via Click Chemistry for Combatting Clinical-Resistant Bacterial Pathogens.

Indian J Microbiol. 2025-3

[3]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

本文引用的文献

[1]
In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection.

Anal Chim Acta. 2023-9-1

[2]
Bioinspired carbon dots: from rose petals to tunable emissive nanodots.

Nanoscale Adv. 2019-1-9

[3]
Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing.

J Mater Chem B. 2017-8-28

[4]
Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging.

J Mater Chem B. 2017-12-7

[5]
Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging.

J Mater Chem B. 2017-7-14

[6]
Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: application in Fe and ascorbic acid determination and cell imaging.

Anal Bioanal Chem. 2019-4-2

[7]
Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging.

J Photochem Photobiol B. 2018-4-11

[8]
Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process.

ACS Appl Mater Interfaces. 2017-5-24

[9]
Scale-Up Synthesis of Fragrant Nitrogen-Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis.

Adv Sci (Weinh). 2015-2-26

[10]
Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli.

Biosens Bioelectron. 2016-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索