Laboratory Lommatzsch & Säger GmbH, Gottfried-Hagen-Str. 60-62, Cologne 51105, Germany.
TU Dresden, Chair of Food Science and Food Contact Materials, Bergstr. 66, Dresden 01062, Germany.
J Chromatogr A. 2024 Jan 25;1715:464600. doi: 10.1016/j.chroma.2023.464600. Epub 2023 Dec 22.
An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.
本文介绍了一种自动化的方法,可将矿物油芳烃(MOAH)亚馏分分为单/二芳烃馏分(MDAF)和三/多芳烃馏分(TPAF),这是欧洲食品安全局(EFSA)对 MOAH 的遗传毒性和致癌潜力的要求。为此,使用供体-受体络合物色谱(DACC)作为选择性固定相,通过在线耦合液相色谱-气相色谱-火焰离子化检测(LC-GC-FID)扩展了矿物油烃分析的常规仪器设置。引入了一组六种新的内标物,用于验证 MOAH 馏分的分离和 MDAF 和 TPAF 的定量。自动化的 DACC 方法应用于代表性的石油化工参考物以及食品样品,如大米和婴儿配方奶粉,通常与使用二维 GC(GCxGC)的最先进分析方法获得的结果非常一致。DACC/LC-GC-FID 与 GCxGC-FID 方法相比,关于≥3 环 MOAH 含量的相对偏差在-50%至+6%之间(中位数:-2%,所有样品,仅在定量限以上的值)。然而,主要的偏差是由于“跨界”物质,如二苯并噻吩或部分氢化的 MOAH 引起的。这些物质可能会导致在 GCxGC 分析中高估≥3 环 MOAH 馏分,因为它们会共洗脱,而使用 DACC 方法可以最大程度地避免这种情况。此外,DACC 方法可以帮助最小化由于氧化过程中 MOAH 不可避免的损失而导致的毒理学相关的≥3 环 MOAH 的低估,因为天然烯烃,如萜烯,主要在 MDAF 中洗脱,这在橄榄油和萜烯参考物中得到了例证。该方法可以很容易地在现有的 LC-GC-FID 装置中实现,用于 MOAH 的自动化和高级筛选,从而降低在常规环境中对复杂 GCxGC 分析的需求。