Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden.
J Biol Chem. 2024 Feb;300(2):105622. doi: 10.1016/j.jbc.2023.105622. Epub 2024 Jan 3.
Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.
流行假单胞菌克隆 C 株系编码两种内膜相关的 ATP 依赖型 FtsH 蛋白酶。PaftsH1 位于核心基因组中,支持细胞生长和固有抗生素耐药性,而 PaftsH2 是通过水平基因转移从远缘物种获得的异种蛋白,无法在功能上替代 PaftsH1。我们发现纯化的 PaFtsH2 降解的底物少于 PaFtsH1。用 PaFtsH1 的相应区域替换横跨跨膜螺旋-2 的 C 末端到胞质 AAA+ATP 酶模块的前七个高度分化残基的 31 个氨基酸延伸的 PaFtsH2 连接区,可改善体外杂交酶底物加工,并使 PaFtsH2 能够在体内替代 PaFtsH1。电子显微镜表明,该连接序列的特性影响 FtsH 的灵活性。我们发现 PaFtsH1 的膜细胞质(MC)连接区与 FtsH2 的相比富含甘氨酸。因此,在 PaFtsH2 的 MC 连接区的膜近端末端引入三个甘氨酸足以提高其在体外和体内的活性。我们的研究结果表明,两种 PaFtsH 同工型对底物的处理效率取决于 MC 连接区的特性,并表明更大的连接区灵活性和/或长度允许 FtsH 降解更广泛的底物谱。由于 PaFtsH2 同源物存在于细菌门中,我们假设 FtsH2 是一种潜在的酶,但可能识别特定的底物,或者在特定的环境或生物小生境中被激活。因此,与之前的想法相比,这种连接的特性可能在 FtsH 蛋白酶的功能和生理影响方面发挥更决定性的作用。