Department of Psychological Methods, Philipps-Universität Marburg, Marburg, Germany.
Department of Social Psychology and Methodology, Universidad Autónoma de Madrid, Madrid, Spain.
Mem Cognit. 2024 May;52(4):793-825. doi: 10.3758/s13421-023-01501-8. Epub 2024 Jan 4.
Signal detection theory (SDT) and two-high threshold models (2HT) are often used to analyze accuracy data in recognition memory paradigms. However, when reaction times (RTs) and/or confidence levels (CLs) are also measured, they usually are analyzed separately or not at all as dependent variables (DVs). We propose a new approach to include these variables based on multinomial processing tree models for discrete and continuous variables (MPT-DC) with the aim to compare fits of SDT and 2HT models. Using Juola et al.'s (2019, Memory & Cognition, 47[4], 855-876) data we have found that including CLs and RTs reduces the standard errors of parameter estimates and accounts for interactions among accuracy, CLs, and RTs that classical versions of SDT and 2HT models do not. In addition, according to the simulations, there is an increase in the proportion of correct model selections when relevant DV are included. We highlight the methodological and substantive advantages of MPT-DC in the disentanglement of contributing processes in recognition memory.
信号检测理论(SDT)和双高阈限模型(2HT)常用于分析识别记忆范式中的准确性数据。然而,当反应时间(RT)和/或置信水平(CL)也被测量时,它们通常作为独立变量(DV)分别进行分析,或者根本不进行分析。我们提出了一种新的方法,基于离散和连续变量的多项处理树模型(MPT-DC),将这些变量纳入其中,目的是比较 SDT 和 2HT 模型的拟合效果。使用 Juola 等人(2019 年,《记忆与认知》,47[4],855-876)的数据,我们发现,纳入 CL 和 RT 可以减少参数估计的标准误差,并解释 SDT 和 2HT 模型无法解释的准确性、CL 和 RT 之间的相互作用。此外,根据模拟结果,当纳入相关的 DV 时,正确选择模型的比例会增加。我们强调了 MPT-DC 在识别记忆中分离贡献过程方面的方法学和实质性优势。