Institut für Psychologie, Universität Münster, Fliednerstr. 21, 48149, Münster, Germany.
Universität Mannheim, Fakultät für Sozialwissenschaften A5, 68159, Mannheim, Germany.
Psychometrika. 2023 Sep;88(3):809-829. doi: 10.1007/s11336-023-09921-w. Epub 2023 May 29.
The present article proposes and evaluates marginal maximum likelihood (ML) estimation methods for hierarchical multinomial processing tree (MPT) models with random and fixed effects. We assume that an identifiable MPT model with S parameters holds for each participant. Of these S parameters, R parameters are assumed to vary randomly between participants, and the remaining [Formula: see text] parameters are assumed to be fixed. We also propose an extended version of the model that includes effects of covariates on MPT model parameters. Because the likelihood functions of both versions of the model are too complex to be tractable, we propose three numerical methods to approximate the integrals that occur in the likelihood function, namely, the Laplace approximation (LA), adaptive Gauss-Hermite quadrature (AGHQ), and Quasi Monte Carlo (QMC) integration. We compare these three methods in a simulation study and show that AGHQ performs well in terms of both bias and coverage rate. QMC also performs well but the number of responses per participant must be sufficiently large. In contrast, LA fails quite often due to undefined standard errors. We also suggest ML-based methods to test the goodness of fit and to compare models taking model complexity into account. The article closes with an illustrative empirical application and an outlook on possible extensions and future applications of the proposed ML approach.
本文提出并评估了具有随机和固定效应的分层多项处理树 (MPT) 模型的边缘最大似然 (ML) 估计方法。我们假设每个参与者都有一个可识别的 S 参数的 MPT 模型。在这些 S 参数中,R 参数假定在参与者之间随机变化,其余的[公式:见正文]参数假定是固定的。我们还提出了模型的扩展版本,其中包括协变量对 MPT 模型参数的影响。由于这两个版本的模型的似然函数都太复杂而无法处理,因此我们提出了三种数值方法来近似似然函数中出现的积分,即拉普拉斯逼近 (LA)、自适应高斯-赫尔墨特求积 (AGHQ) 和拟蒙特卡罗 (QMC) 积分。我们在模拟研究中比较了这三种方法,结果表明 AHQ 在偏差和覆盖率方面表现良好。QMC 也表现良好,但每个参与者的响应数量必须足够大。相比之下,LA 由于标准误差未定义而经常失败。我们还建议基于 ML 的方法来检验拟合优度,并考虑模型复杂性来比较模型。本文最后通过一个说明性的实证应用和对所提出的 ML 方法的可能扩展和未来应用的展望结束。