Suppr超能文献

Correction method for temperature measurements inside clouds using rotational Raman lidar.

作者信息

Li Qimeng, Di Huige, Chen Ning, Cheng Xiao, Yang Jiaying, Guo Yan, Hua Dengxin

出版信息

Opt Express. 2023 Dec 18;31(26):44088-44101. doi: 10.1364/OE.507673.

Abstract

Rotational Raman lidar is an important technique for detecting atmospheric temperature. However, in cloud regions with strong elastic scattering conditions, elastic scattering crosstalk (ESC) is prevalent due to insufficient out-of-band suppression of the optical filter, resulting significant deviations in temperature retrieval. To address this challenge, a temperature correction technique for optically-thin clouds based on the backscatter ratio is proposed. Using the least-squares method, a temperature correction function is formulated based on the relationship between the ESC and backscatter ratio of clouds. Subsequently, the backscatter ratio is used to correct the rotational Raman ratio of clouds, thereby obtaining the vertical distribution of atmospheric temperature within the cloud layer. The feasibility of this method was assessed through numerical simulations and experimentally validated using a temperature and aerosol detection lidar at the Xi'an University of Technology (XUT). The results indicate that the difference between the retrieved temperature profile under high signal-to-noise ratio conditions and radiosonde data is less than 1.5 K. This correction technique enables atmospheric temperature measurements under elastic scattering conditions with a backscatter ratio less than 115, advancing research on atmospheric structure and cloud microphysics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验