Suppr超能文献

机器学习揭示中性粒细胞与淋巴细胞比值是重症日本脑炎患者的关键预后指标。

Machine learning reveals neutrophil-to-lymphocyte ratio as a crucial prognostic indicator in severe Japanese encephalitis patients.

作者信息

Wei Yaxuan, Hao Ying, Li Yuanming, Dan Meiling, Yang Zhiqi, Qiu Huihui, Li Rong, Yin Rong, Fan Pengcheng

机构信息

Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China.

Department of Neurology, Gansu Province Central Hospital, Lanzhou, China.

出版信息

Front Neurol. 2023 Dec 20;14:1242317. doi: 10.3389/fneur.2023.1242317. eCollection 2023.

Abstract

Japanese encephalitis (JE) is a severe infectious disease affecting the central nervous system (CNS). However, limited risk factors have been identified for predicting poor prognosis (PP) in adults with severe JE. In this study, we analyzed clinical data from thirty-eight severe adult JE patients and compared them to thirty-three patients without organic CNS disease. Machine learning techniques employing branch-and-bound algorithms were used to identify clinical risk factors. Based on clinical outcomes, patients were categorized into two groups: the PP group (mRs ≥ 3) and the good prognosis (GP) group (mRs ≤ 2) at three months post-discharge. We found that the neutrophil-to-lymphocyte ratio (NLR) and the percentage of neutrophilic count (N%) were significantly higher in the PP group compared to the GP group. Conversely, the percentage of lymphocyte count (L%) was significantly lower in the PP group. Additionally, elevated levels of aspartate aminotransferase (AST) and blood glucose were observed in the PP group compared to the GP group. The clinical parameters most strongly correlated with prognosis, as indicated by Pearson correlation coefficient (PCC), were NLR (PCC 0.45) and blood glucose (PCC 0.45). In summary, our findings indicate that increased serum NLR, N%, decreased L%, abnormal glucose metabolism, and liver function impairment are risk factors associated with poor prognosis in severe adult JE patients.

摘要

日本脑炎(JE)是一种影响中枢神经系统(CNS)的严重传染病。然而,对于预测重症JE成年患者的不良预后(PP),已确定的风险因素有限。在本研究中,我们分析了38例重症成年JE患者的临床数据,并将其与33例无中枢神经系统器质性疾病的患者进行比较。采用分支定界算法的机器学习技术用于识别临床风险因素。根据临床结局,患者在出院后三个月被分为两组:PP组(改良Rankin量表[mRs]≥3)和良好预后(GP)组(mRs≤2)。我们发现,与GP组相比,PP组的中性粒细胞与淋巴细胞比值(NLR)和中性粒细胞计数百分比(N%)显著更高。相反,PP组的淋巴细胞计数百分比(L%)显著更低。此外,与GP组相比,PP组的天冬氨酸转氨酶(AST)水平和血糖升高。根据Pearson相关系数(PCC),与预后最密切相关的临床参数是NLR(PCC 0.45)和血糖(PCC 0.45)。总之,我们的研究结果表明,血清NLR升高、N%升高、L%降低、糖代谢异常和肝功能损害是重症成年JE患者不良预后的相关风险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验