Suppr超能文献

联合分位数疾病定位及其在疟疾和葡萄糖-6-磷酸脱氢酶缺乏症中的应用

Joint quantile disease mapping with application to malaria and G6PD deficiency.

作者信息

Alahmadi Hanan, van Niekerk Janet, Padellini Tullia, Rue Håvard

机构信息

Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia.

Statistics and Operations Research Department, King Saud University (KSU), Riyadh 11564, Riyadh, Kingdom of Saudi Arabia.

出版信息

R Soc Open Sci. 2024 Jan 3;11(1):230851. doi: 10.1098/rsos.230851. eCollection 2024 Jan.

Abstract

Statistical analysis based on quantile methods is more comprehensive, flexible and less sensitive to outliers when compared to mean methods. Joint disease mapping is useful for inferring correlation between different diseases. Most studies investigate this link through multiple correlated mean regressions. We propose a joint quantile regression framework for multiple diseases where different quantile levels can be considered. We are motivated by the theorized link between the presence of malaria and the gene deficiency G6PD, where medical scientists have anecdotally discovered a possible link between high levels of G6PD and lower than expected levels of malaria initially pointing towards the occurrence of G6PD inhibiting the occurrence of malaria. Thus, the need for flexible joint quantile regression in a disease mapping framework arises. Our model can be used for linear and nonlinear effects of covariates by stochastic splines since we define it as a latent Gaussian model. We perform Bayesian inference using the R integrated nested Laplace approximation, suitable even for large datasets. Finally, we illustrate the model's applicability by considering data from 21 countries, although better data are needed to prove a significant relationship. The proposed methodology offers a framework for future studies of interrelated disease phenomena.

摘要

与均值方法相比,基于分位数方法的统计分析更全面、灵活,且对异常值不太敏感。联合疾病映射有助于推断不同疾病之间的相关性。大多数研究通过多个相关均值回归来探究这种联系。我们提出了一个针对多种疾病的联合分位数回归框架,该框架可以考虑不同的分位数水平。我们的动机源于疟疾的存在与基因缺陷G6PD之间的理论联系,医学科学家曾凭经验发现G6PD水平较高与疟疾水平低于预期之间可能存在联系,这最初表明G6PD的出现抑制了疟疾的发生。因此,在疾病映射框架中就需要灵活的联合分位数回归。由于我们将模型定义为潜在高斯模型,所以可以通过随机样条来用于协变量的线性和非线性效应。我们使用R集成嵌套拉普拉斯近似进行贝叶斯推断,这种方法甚至适用于大型数据集。最后,我们通过考虑来自21个国家的数据来说明该模型的适用性,不过需要更好的数据来证明显著关系。所提出的方法为未来相关疾病现象的研究提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/105a/10762445/e53015057f6a/rsos230851f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验