Suppr超能文献

使用PharmaPy对动态、端到端的最优制药批次生产进行技术经济分析。

Techno-economic analysis of dynamic, end-to-end optimal pharmaceutical campaign manufacturing using PharmaPy.

作者信息

Casas-Orozco Daniel, Laky Daniel, Wang Vivian, Abdi Mesfin, Feng X, Wood E, Reklaitis Gintaras V, Nagy Zoltan K

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA.

Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA.

出版信息

AIChE J. 2023;69(9). doi: 10.1002/aic.18142. Epub 2023 Apr 16.

Abstract

Increased interest in the pharmaceutical industry to transition from batch to continuouos manufacturing motivates the use of digital frameworks that allow systematic comparison of candidate process configurations. This paper evaluates the technical and economic feasibility of different end-to-end optimal process configurations, . batch, hybrid and continuous, for small-scale manufacturing of an active pharmaceutical ingredient. Production were analyzed for those configurations containing continuous equipment, where significant start-up effects are expected given the relatively short campaign times considered. Hybrid operating mode was found to be the most attractive process configuration at intermediate and large annual production targets, which stems from combining continuous reactors and semi-batch vaporization equipment. Continuous operation was found to be more costly, due to long stabilization times of continuous crystallization, and thermodynamic limitations of flash vaporization. Our work reveals the benefits of systematic digital evaluation of process configurations that operate under feasible conditions and compliant product quality attributes.

摘要

制药行业对从间歇式生产向连续式生产转型的兴趣日益浓厚,这推动了数字框架的使用,该框架允许对候选工艺配置进行系统比较。本文评估了用于活性药物成分小规模生产的不同端到端最优工艺配置(间歇式、混合式和连续式)的技术和经济可行性。对那些包含连续设备的配置进行了生产分析,考虑到所考虑的相对较短的生产周期,预计会有显著的启动效应。发现混合操作模式在中等和大型年度生产目标下是最具吸引力的工艺配置,这源于连续反应器和半间歇式汽化设备的结合。由于连续结晶的稳定时间长以及闪蒸汽化的热力学限制,连续操作成本更高。我们的工作揭示了对在可行条件下运行且符合产品质量属性的工艺配置进行系统数字评估的好处。

相似文献

2
Application of PharmaPy in the digital design of the manufacturing process of an active pharmaceutical ingredient.
ESCAPE. 2021;50:333-339. doi: 10.1016/b978-0-323-88506-5.50053-x. Epub 2021 Jul 18.
3
PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.
4
Digital twin of a continuous direct compression line for drug product and process design using a hybrid flowsheet modelling approach.
Int J Pharm. 2022 Nov 25;628:122336. doi: 10.1016/j.ijpharm.2022.122336. Epub 2022 Oct 26.
5
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.
6
Digital design of an integrated purification system for continuous pharmaceutical manufacturing.
Chem Eng Sci. 2024 Mar 5;285. doi: 10.1016/j.ces.2023.119534. Epub 2023 Dec 9.
7
Optimization of key energy and performance metrics for drug product manufacturing.
Int J Pharm. 2023 Jan 25;631:122487. doi: 10.1016/j.ijpharm.2022.122487. Epub 2022 Dec 13.
8
Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing.
Pharmaceutics. 2020 Mar 5;12(3):235. doi: 10.3390/pharmaceutics12030235.
9
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
PDA J Pharm Sci Technol. 2017 May-Jun;71(3):189-205. doi: 10.5731/pdajpst.2016.006882. Epub 2016 Dec 14.
10
A systematic techno-economic approach to decide between continuous and batch operation modes for injectable manufacturing.
Int J Pharm. 2022 Feb 5;613:121353. doi: 10.1016/j.ijpharm.2021.121353. Epub 2021 Dec 9.

引用本文的文献

1
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.

本文引用的文献

1
PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.
2
A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing.
Comput Chem Eng. 2019 Jun 9;125:216-231. doi: 10.1016/j.compchemeng.2019.03.001.
3
Perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes.
Chin J Chem Eng. 2022 Jan;41:29-41. doi: 10.1016/j.cjche.2021.12.005. Epub 2021 Dec 20.
5
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
6
Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions.
Science. 2017 Jun 16;356(6343):1144-1150. doi: 10.1126/science.aan0745.
7
Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine.
Bioorg Med Chem. 2017 Dec 1;25(23):6233-6241. doi: 10.1016/j.bmc.2017.02.002. Epub 2017 Feb 4.
8
On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system.
Science. 2016 Apr 1;352(6281):61-7. doi: 10.1126/science.aaf1337.
9
Understanding pharmaceutical quality by design.
AAPS J. 2014 Jul;16(4):771-83. doi: 10.1208/s12248-014-9598-3. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验