Suppr超能文献

PharmaPy:用于开发混合制药流程图的面向对象工具。

PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.

作者信息

Casas-Orozco Daniel, Laky Daniel, Wang Vivian, Abdi Mesfin, Feng X, Wood E, Laird Carl, Reklaitis Gintaras V, Nagy Zoltan K

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA.

Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA.

出版信息

Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.

Abstract

Process design and optimization continue to provide computational challenges as the chemical engineering and process optimization communities seek to address more complex and larger scale applications. Software tools for digital design and flowsheet simulation are readily available for traditional chemical processing applications such as in commodity chemicals and hydrocarbon processing; however, tools for pharmaceutical manufacturing are much less well developed. This paper introduces, PharmaPy, a Python-based modelling platform for pharmaceutical manufacturing systems design and optimization. The versatility of the platform is demonstrated in simulation and optimization of both continuous and batch processes. The structure and features of a Python-based modeling platform, PharmaPy are presented. Illustrative examples are shown to highlight key features of the platform and framework.

摘要

随着化学工程和过程优化领域寻求解决更复杂、更大规模的应用,过程设计和优化持续带来计算方面的挑战。用于数字设计和流程图模拟的软件工具在传统化学加工应用中很容易获得,比如在大宗商品化学品和烃加工领域;然而,用于制药生产的工具则远未得到充分发展。本文介绍了PharmaPy,这是一个用于制药生产系统设计和优化的基于Python的建模平台。该平台的通用性在连续和间歇过程的模拟与优化中得到了体现。文中展示了基于Python的建模平台PharmaPy的结构和特性。通过示例突出了该平台和框架的关键特性。

相似文献

1
PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.
2
Application of PharmaPy in the digital design of the manufacturing process of an active pharmaceutical ingredient.
ESCAPE. 2021;50:333-339. doi: 10.1016/b978-0-323-88506-5.50053-x. Epub 2021 Jul 18.
3
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.
4
Simulation-optimization framework for the digital design of pharmaceutical processes using Pyomo and PharmaPy.
Ind Eng Chem Res. 2022;61(43):16128-16140. doi: 10.1021/acs.iecr.2c01636. Epub 2022 Oct 24.
6
Digital design of an integrated purification system for continuous pharmaceutical manufacturing.
Chem Eng Sci. 2024 Mar 5;285. doi: 10.1016/j.ces.2023.119534. Epub 2023 Dec 9.
7
Digital twin of a continuous direct compression line for drug product and process design using a hybrid flowsheet modelling approach.
Int J Pharm. 2022 Nov 25;628:122336. doi: 10.1016/j.ijpharm.2022.122336. Epub 2022 Oct 26.
8
Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine.
Chem Eng Sci. 2023;275. doi: 10.1016/j.ces.2023.118591. Epub 2023 Jul 6.
9
System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):1164-82. doi: 10.1016/j.ejpb.2013.02.019. Epub 2013 Mar 21.
10
Optimization of key energy and performance metrics for drug product manufacturing.
Int J Pharm. 2023 Jan 25;631:122487. doi: 10.1016/j.ijpharm.2022.122487. Epub 2022 Dec 13.

引用本文的文献

1
Machine learning: Python tools for studying biomolecules and drug design.
Mol Divers. 2025 Apr 29. doi: 10.1007/s11030-025-11199-2.
2
Digital design of an integrated purification system for continuous pharmaceutical manufacturing.
Chem Eng Sci. 2024 Mar 5;285. doi: 10.1016/j.ces.2023.119534. Epub 2023 Dec 9.
3
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.
4
Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine.
Chem Eng Sci. 2023;275. doi: 10.1016/j.ces.2023.118591. Epub 2023 Jul 6.
6
Simulation-optimization framework for the digital design of pharmaceutical processes using Pyomo and PharmaPy.
Ind Eng Chem Res. 2022;61(43):16128-16140. doi: 10.1021/acs.iecr.2c01636. Epub 2022 Oct 24.
7
Fast time-resolved micro-CT imaging of pharmaceutical tablets: Insights into water uptake and disintegration.
Int J Pharm. 2023 Dec 15;648:123565. doi: 10.1016/j.ijpharm.2023.123565. Epub 2023 Oct 31.
8
Semi-mechanistic reduced order model of pharmaceutical tablet dissolution for enabling Industry 4.0 manufacturing systems.
Int J Pharm. 2023 Jan 25;631:122502. doi: 10.1016/j.ijpharm.2022.122502. Epub 2022 Dec 16.

本文引用的文献

1
A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing.
Comput Chem Eng. 2019 Jun 9;125:216-231. doi: 10.1016/j.compchemeng.2019.03.001.
2
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
Understanding pharmaceutical quality by design.
AAPS J. 2014 Jul;16(4):771-83. doi: 10.1208/s12248-014-9598-3. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验