全基因组关联和孟德尔随机化分析为高维心电图特征与缺血性心脏病之间的共享遗传结构提供了深入了解。

Genome-wide association and Mendelian randomization analysis provide insights into the shared genetic architecture between high-dimensional electrocardiographic features and ischemic heart disease.

机构信息

College of Computer Science and Engineering, Jishou University, Jishou, China.

Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China.

出版信息

Hum Genet. 2024 Jan;143(1):49-58. doi: 10.1007/s00439-023-02614-5. Epub 2024 Jan 5.

Abstract

Observational studies have revealed that ischemic heart disease (IHD) has a unique manifestation on electrocardiographic (ECG). However, the genetic relationships between IHD and ECG remain unclear. We took 12-lead ECG as phenotypes to conduct genome-wide association studies (GWAS) for 41,960 samples from UK-Biobank (UKB). By leveraging large-scale GWAS summary of ECG and IHD (downloaded from FinnGen database), we performed LD score regression (LDSC), Mendelian randomization (MR), and polygenic risk score (PRS) regression to explore genetic relationships between IHD and ECG. Finally, we constructed an XGBoost model to predict IHD by integrating PRS and ECG. The GWAS identified 114 independent SNPs significantly (P value < 5 × 10-8/800, where 800 denotes the number of ECG features) associated with ECG. LDSC analysis indicated significant (P value < 0.05) genetic correlations between 39 ECG features and IHD. MR analysis performed by five approaches showed a putative causal effect of IHD on four S wave related ECG features at lead III. Integrating PRS for these ECG features with age and gender, the XGBoost model achieved Area Under Curve (AUC) 0.72 in predicting IHD. Here, we provide genetic evidence supporting S wave related ECG features at lead III to monitor the IHD risk, and open up a unique approach to integrate ECG with genetic factors for pre-warning IHD.

摘要

观察性研究表明,缺血性心脏病(IHD)在心电图(ECG)上具有独特的表现。然而,IHD 和 ECG 之间的遗传关系尚不清楚。我们以 12 导联心电图(ECG)为表型,对来自英国生物银行(UKB)的 41960 个样本进行全基因组关联研究(GWAS)。通过利用来自 FinnGen 数据库的大规模 ECG 和 IHD 的 GWAS 汇总数据,我们进行了 LD 得分回归(LDSC)、孟德尔随机化(MR)和多基因风险评分(PRS)回归,以探索 IHD 和 ECG 之间的遗传关系。最后,我们构建了一个 XGBoost 模型,通过整合 PRS 和 ECG 来预测 IHD。GWAS 确定了 114 个与 ECG 显著相关的独立 SNP(P 值<5×10-8/800,其中 800 表示 ECG 特征的数量)。LDSC 分析表明,39 个 ECG 特征与 IHD 之间存在显著的遗传相关性(P 值<0.05)。通过五种方法进行的 MR 分析表明,IHD 对 III 导联的四个 S 波相关 ECG 特征存在潜在的因果效应。通过整合这些 ECG 特征的 PRS 与年龄和性别,XGBoost 模型在预测 IHD 方面实现了 AUC 0.72。本研究提供了支持 III 导联 S 波相关 ECG 特征监测 IHD 风险的遗传证据,并为整合 ECG 与遗传因素以预警 IHD 开辟了独特的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索