Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510006, China.
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China.
Hum Genet. 2024 Oct;143(9-10):1095-1108. doi: 10.1007/s00439-024-02661-6. Epub 2024 Mar 20.
Aims Many studies indicated use of diabetes medications can influence the electrocardiogram (ECG), which remains the simplest and fastest tool for assessing cardiac functions. However, few studies have explored the role of genetic factors in determining the relationship between the use of diabetes medications and ECG trace characteristics (ETC). Methods Genome-wide association studies (GWAS) were performed for 168 ETCs extracted from the 12-lead ECGs of 42,340 Europeans in the UK Biobank. The genetic correlations, causal relationships, and phenotypic relationships of these ETCs with medication usage, as well as the risk of cardiovascular diseases (CVDs), were estimated by linkage disequilibrium score regression (LDSC), Mendelian randomization (MR), and regression model, respectively. Results The GWAS identified 124 independent single nucleotide polymorphisms (SNPs) that were study-wise and genome-wide significantly associated with at least one ETC. Regression model and LDSC identified significant phenotypic and genetic correlations of T-wave area in lead aVR (aVR_T-area) with usage of diabetes medications (ATC code: A10 drugs, and metformin), and the risks of ischemic heart disease (IHD) and coronary atherosclerosis (CA). MR analyses support a putative causal effect of the use of diabetes medications on decreasing aVR_T-area, and on increasing risk of IHD and CA. ConclusionPatients taking diabetes medications are prone to have decreased aVR_T-area and an increased risk of IHD and CA. The aVR_T-area is therefore a potential ECG marker for pre-clinical prediction of IHD and CA in patients taking diabetes medications.
目的 许多研究表明,糖尿病药物的使用会影响心电图(ECG),而心电图仍然是评估心脏功能的最简单、最快的工具。然而,很少有研究探讨遗传因素在确定糖尿病药物使用与心电图迹特征(ETC)之间关系中的作用。
方法 对英国生物库中 42340 名欧洲人的 12 导联心电图中提取的 168 个 ETC 进行全基因组关联研究(GWAS)。通过连锁不平衡评分回归(LDSC)、孟德尔随机化(MR)和回归模型分别估计这些 ETC 与药物使用、心血管疾病(CVD)风险的遗传相关性、因果关系和表型关系。
结果 GWAS 确定了 124 个独立的单核苷酸多态性(SNP),这些 SNP 在至少一个 ETC 上具有研究意义和全基因组意义上的显著相关性。回归模型和 LDSC 确定了 aVR 导联 T 波面积(aVR_T-area)与糖尿病药物使用(ATC 码:A10 药物和二甲双胍)以及缺血性心脏病(IHD)和冠状动脉粥样硬化(CA)风险之间存在显著的表型和遗传相关性。MR 分析支持糖尿病药物使用对降低 aVR_T-area 以及增加 IHD 和 CA 风险的潜在因果效应。
结论 服用糖尿病药物的患者更容易出现 aVR_T-area 降低和 IHD 和 CA 风险增加。因此,aVR_T-area 是预测服用糖尿病药物的患者发生 IHD 和 CA 的潜在心电图标志物。