Suppr超能文献

采用荧光光谱法结合化学计量学评价不同回归模型对芥末油和菜籽油与颠茄籽油掺伪的检测。

Evaluation of different regression models for detection of adulteration of mustard and canola oil with argemone oil using fluorescence spectroscopy coupled with chemometrics.

机构信息

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India.

出版信息

Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2024 Feb;41(2):105-119. doi: 10.1080/19440049.2023.2297869. Epub 2024 Feb 1.

Abstract

Mustard and canola oils are commonly used cooking oils in Asian countries such as India, Nepal, and Bangladesh, making them prone to adulteration. Argemone is a well-known adulterant of mustard oil, and its alkaloid sanguinarine has been linked with health conditions such as glaucoma and dropsy. Utilising a non-destructive spectroscopic method coupled with a chemometric approach can serve better for the detection of adulterants. This work aimed to evaluate the performance of various regression algorithms for the detection of argemone in mustard and canola oils. The spectral dataset was acquired from fluorescence spectrometer analysis of pure as well as adulterated mustard and canola oils with some local and commercial samples also. The prediction performance of the eight regression algorithms for the detection of adulterants was evaluated. Extreme gradient boosting regressor (XGBR), Category gradient boosting regressor (CBR), and Random Forest (RF) demonstrate potential for predicting adulteration levels in both oils with high values.

摘要

芥花籽油和菜籽油是印度、尼泊尔和孟加拉国等亚洲国家常用的食用油,因此它们容易被掺假。毒蕈碱是一种常见的芥花籽油掺假物,其生物碱血根碱与青光眼和水肿等健康状况有关。利用非破坏性光谱方法结合化学计量学方法可以更好地检测掺杂物。本工作旨在评估各种回归算法在检测芥花籽油和菜籽油中掺杂物的性能。光谱数据集是通过荧光光谱仪分析纯芥花籽油和菜籽油以及一些本地和商业样品获得的。评估了八种回归算法对掺杂物检测的预测性能。极端梯度提升回归器(XGBR)、类别梯度提升回归器(CBR)和随机森林(RF)在预测两种油的掺假水平方面表现出了潜力,值较高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验