Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Int J Pharm. 2024 Feb 15;651:123779. doi: 10.1016/j.ijpharm.2024.123779. Epub 2024 Jan 3.
Prolonged and excessive use of biocides during the coronavirus disease era calls for incorporating new antiviral polymers that enhance the surface design and functionality for existing and potential future pandemics. Herein, we investigated previously unexplored polyamines with nucleophilic biguanide, guanidine, and hydantoin groups that all can be halogenated leading to high contents of oxidizing halogen that enables enhancement of the biocidal activity. Primary amino groups can be used to attach poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) as well as a broad-spectrum commercial biocide poly(hexamethylene biguanide) (PHMB) onto a solid support. Halogenation of polymer suspensions was conducted through in situ generation of excess hypobromous acid (HBrO) from bromine and sodium hydroxide or by sodium hypochlorite in aqueous solutions, resulting in N-halamines with high contents of active > N-Br or > N-Cl groups. The virucidal activity of the polymers against human respiratory coronavirus HCoV-229E increased dramatically with their halogenation. Brominated PHMB-Br showed activation activity value > 5 even at 1 mg/L, and complete virus inhibition was observed with either PHMB-Br or PAH-Br at 10 mg/mL. Brominated PVG-Br and PAH-Br possessed fungicidal activity against C. albicans, while PHMB was fungistatic. PHMB, PHMB-Br and PAH polymers demonstrated excellent bactericidal activity against the methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Brominated polymers (PHMB-Br, PVG-Br, PAH-Br) were not toxic to the HeLa monolayers, indicating acceptable biocompatibility to cultured human cells. With these features, the N-halamine polymers of the present study are a worthwhile addition to the arsenal of biocides and are promising candidates for development of non-leaching coatings.
在冠状病毒病时代,长期和过度使用生物杀灭剂需要引入新的抗病毒聚合物,以增强现有和潜在未来大流行病的表面设计和功能。在此,我们研究了以前未探索过的带有亲核双胍、胍和海因基团的多胺,所有这些基团都可以卤化,从而导致高含量的氧化卤,从而增强生物杀灭活性。伯氨基可用于将聚(N-乙烯基胍)(PVG)和聚(烯丙胺-co-4-氨基吡啶-co-5-(4-羟基亚苄基)海因)(PAH)以及广谱商业生物杀灭剂聚(六亚甲基双胍)(PHMB)连接到固体载体上。通过在溴和氢氧化钠或次氯酸钠的水溶液中就地生成过量次溴酸(HBrO),对聚合物悬浮液进行卤化,得到高含量活性>N-Br 或>N-Cl 基团的 N-卤代胺。聚合物对人呼吸道冠状病毒 HCoV-229E 的抗病毒活性随着其卤化而显著提高。溴化 PHMB-Br 在 1mg/L 时甚至表现出>5 的激活活性值,而在 10mg/mL 时,无论是 PHMB-Br 还是 PAH-Br 都能完全抑制病毒。溴化 PVG-Br 和 PAH-Br 对白色念珠菌具有杀真菌活性,而 PHMB 则具有抗真菌作用。PHMB、PHMB-Br 和 PAH 聚合物对耐甲氧西林金黄色葡萄球菌和万古霉素耐药粪肠球菌表现出优异的杀菌活性。溴化聚合物(PHMB-Br、PVG-Br、PAH-Br)对 HeLa 单层没有毒性,表明对培养的人细胞具有可接受的生物相容性。具有这些特性,本研究中的 N-卤代胺聚合物是生物杀灭剂武器库的一个有价值的补充,并且是开发非浸出涂层的有前途的候选物。