School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
Environ Pollut. 2024 Mar 1;344:123292. doi: 10.1016/j.envpol.2024.123292. Epub 2024 Jan 3.
To remediate the Cr(VI)-organic co-contaminants in a non-ferrous mining area, a gallic acid (GA) accelerated lead-zinc smelting slag (LZSS, a mine-sourced waste) mediated peroxodisulfate (PDS) Fenton-like system was constructed for degradation of two typical flotation reagents (benzotriazole and N-hydroxyphthalimide). LZSS acting as an in-situ Fe source in the Fenton-like process, could continuously release Fe species, while GA as a chelate with reducing properties was able to accelerate the rate-limiting step of Fe(III)/Fe(II) cycle to enhance the production of reactive oxygen species (ROS). In the LZSS/PDS/GA system, produced SO, OH and Fe(IV) jointly contributed to the contaminant removal through radical/nonradical pathways. However, when Cr(VI) coexisted with organic pollutants in the LZSS/PDS/GA system, the reduction of Cr(VI) consumed the electrons that otherwise would have been available for activation of PDS, resulting in fewer different ROS being produced. The increased concentration of GA, as an electron donor, promoted the production of SO, but this promoting effect gradually diminished with increasing Cr(VI). Overall, the dominant ROS gradually transformed from Fe(IV) to SO/OH as the GA level increased or the Cr(VI) level decreased. Therefore, regulation of the relative roles of ROS by adjusting either the GA dosage or the Cr(VI) levels in the wastewater can improve availability of ROS for further specific removal of pollutants. This study offers an all-in-one solution for utilization of LZSS industrial waste and degradation of flotation reagents, and it also provides a new insight into the advanced environmental application of GA in remediation of Cr(VI)-organic co-contamination.
为修复有色矿区的 Cr(VI)-有机共污染物,构建了一种没食子酸(GA)加速的铅锌冶炼渣(LZSS,一种矿山来源的废物)介导过一硫酸盐(PDS)类 Fenton 体系,用于降解两种典型的浮选药剂(苯骈三氮唑和 N-羟基邻苯二甲酰亚胺)。LZSS 在类 Fenton 过程中作为原位 Fe 源,可以持续释放 Fe 物种,而 GA 作为具有还原性质的螯合剂能够加速 Fe(III)/Fe(II)循环的限速步骤,从而增强活性氧物种(ROS)的生成。在 LZSS/PDS/GA 体系中,产生的 SO、OH 和 Fe(IV) 通过自由基/非自由基途径共同促进污染物的去除。然而,当 Cr(VI)与有机污染物共存于 LZSS/PDS/GA 体系中时,Cr(VI)的还原消耗了本可用于激活 PDS 的电子,导致产生的不同 ROS 减少。增加 GA 的浓度作为电子供体,会促进 SO 的生成,但随着 Cr(VI)的增加,这种促进作用逐渐减弱。总体而言,随着 GA 水平的增加或 Cr(VI)水平的降低,主导的 ROS 逐渐从 Fe(IV)转变为 SO/OH。因此,通过调节 GA 剂量或废水中的 Cr(VI)水平来调节 ROS 的相对作用,可以提高 ROS 的可用性,以进一步有针对性地去除污染物。该研究为利用 LZSS 工业废物和降解浮选药剂提供了一种一体化解决方案,同时也为 GA 在修复 Cr(VI)-有机共污染方面的高级环境应用提供了新的见解。