文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测影像学膝关节骨关节炎发生率的预后模型。

Prognostic model to predict the incidence of radiographic knee osteoarthritis.

机构信息

Grupo de Investigación de Reumatología (GIR), INIBIC-Hospital Universitario A Coruña, SERGAS, A Coruña, Spain.

Grupo de Reumatología y Salud, Departamento de Fisioterapia y Medicina, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, A Coruña, Spain.

出版信息

Ann Rheum Dis. 2024 Apr 11;83(5):661-668. doi: 10.1136/ard-2023-225090.


DOI:10.1136/ard-2023-225090
PMID:38182405
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11041610/
Abstract

OBJECTIVE: Early diagnosis of knee osteoarthritis (KOA) in asymptomatic stages is essential for the timely management of patients using preventative strategies. We develop and validate a prognostic model useful for predicting the incidence of radiographic KOA (rKOA) in non-radiographic osteoarthritic subjects and stratify individuals at high risk of developing the disease. METHODS: Subjects without radiographic signs of KOA according to the Kellgren and Lawrence (KL) classification scale (KL=0 in both knees) were enrolled in the OA initiative (OAI) cohort and the Prospective Cohort of A Coruña (PROCOAC). Prognostic models were developed to predict rKOA incidence during a 96-month follow-up period among OAI participants based on clinical variables and serum levels of the candidate protein biomarkers APOA1, APOA4, ZA2G and A2AP. The predictive capability of the biomarkers was assessed based on area under the curve (AUC), and internal validation was performed to correct for overfitting. A nomogram was plotted based on the regression parameters. Model performance was externally validated in the PROCOAC. RESULTS: 282 participants from the OAI were included in the development dataset. The model built with demographic, anthropometric and clinical data (age, sex, body mass index and WOMAC pain score) showed an AUC=0.702 for predicting rKOA incidence during the follow-up. The inclusion of ZA2G, A2AP and APOA1 data significantly improved the model's sensitivity and predictive performance (AUC=0.831). The simplest model, including only clinical covariates and ZA2G and A2AP serum levels, achieved an AUC=0.826. Both models were internally cross-validated. Predictive performance was externally validated in an independent dataset of 100 individuals from the PROCOAC (AUC=0.713). CONCLUSION: A novel prognostic model based on common clinical variables and protein biomarkers was developed and externally validated to predict rKOA incidence over a 96-month period in individuals without any radiographic signs of disease. The resulting nomogram is a useful tool for stratifying high-risk populations and could potentially lead to personalised medicine strategies for treating OA.

摘要

目的:在无症状阶段早期诊断膝骨关节炎(KOA)对于及时采用预防策略管理患者至关重要。我们开发并验证了一种预测模型,用于预测无放射学骨关节炎(OA)受试者的放射学 KOA(rKOA)发生率,并对疾病高风险个体进行分层。

方法:根据 Kellgren 和 Lawrence(KL)分类量表(双侧膝关节 KL=0),无放射学 KOA 迹象的受试者被纳入 OA 倡议(OAI)队列和拉科鲁尼亚前瞻性队列(PROCOAC)。根据临床变量和候选蛋白生物标志物 APOA1、APOA4、ZA2G 和 A2AP 的血清水平,为 OAI 参与者开发了预测 96 个月随访期间 rKOA 发生率的预测模型。基于曲线下面积(AUC)评估生物标志物的预测能力,并进行内部验证以纠正过度拟合。根据回归参数绘制了列线图。在 PROCOAC 中进行了模型的外部验证。

结果:纳入 OAI 的 282 名参与者进入开发数据集。基于人口统计学、人体测量学和临床数据(年龄、性别、体重指数和 WOMAC 疼痛评分)构建的模型显示,预测随访期间 rKOA 发生率的 AUC=0.702。纳入 ZA2G、A2AP 和 APOA1 数据显著提高了模型的敏感性和预测性能(AUC=0.831)。仅包含临床协变量和 ZA2G 和 A2AP 血清水平的最简单模型,其 AUC=0.826。两个模型均进行了内部交叉验证。在来自 PROCOAC 的 100 名独立参与者的数据集进行了外部验证(AUC=0.713)。

结论:我们开发了一种基于常见临床变量和蛋白质生物标志物的新型预测模型,并在没有任何疾病放射学迹象的个体中进行了外部验证,以预测 96 个月内 rKOA 的发生率。由此产生的列线图是对高危人群进行分层的有用工具,并可能为 OA 的个体化医学策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0213/11041610/754234957cd6/ard-2023-225090f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0213/11041610/63fc14a9ff60/ard-2023-225090f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0213/11041610/754234957cd6/ard-2023-225090f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0213/11041610/63fc14a9ff60/ard-2023-225090f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0213/11041610/754234957cd6/ard-2023-225090f02.jpg

相似文献

[1]
Prognostic model to predict the incidence of radiographic knee osteoarthritis.

Ann Rheum Dis. 2024-4-11

[2]
Predicting Incident Radiographic Knee Osteoarthritis in Middle-Aged Women Within Four Years: The Importance of Knee-Level Prognostic Factors.

Arthritis Care Res (Hoboken). 2020-1

[3]
A clinical model including protein biomarkers predicts radiographic knee osteoarthritis: a prospective study using data from the Osteoarthritis Initiative.

Osteoarthritis Cartilage. 2021-8

[4]
Radiomics-based nomogram for predicting total knee replacement in knee osteoarthritis patients.

Eur J Radiol. 2025-1

[5]
Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative.

J Magn Reson Imaging. 2017-11-16

[6]
Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

Osteoarthritis Cartilage. 2017-9-19

[7]
Prediction models for the risk of total knee replacement: development and validation using data from multicentre cohort studies.

Lancet Rheumatol. 2022-2

[8]
Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative.

Ann Rheum Dis. 2019-8-30

[9]
PROCOAC (PROspective COhort of A Coruña) description: Spanish prospective cohort to study osteoarthritis.

Reumatol Clin (Engl Ed). 2022-2

[10]
Is loss in femorotibial cartilage thickness related to severity of contra-lateral radiographic knee osteoarthritis?--longitudinal data from the Osteoarthritis Initiative.

Osteoarthritis Cartilage. 2014-12

引用本文的文献

[1]
[Predictors of Knee Replacement Following Meniscal Tear Arthroscopy: a 7-Year Risk Prediction Model].

Acta Chir Orthop Traumatol Cech. 2025-6

[2]
Integration of longitudinal load-bearing tissue MRI radiomics and neural network to predict knee osteoarthritis incidence.

J Orthop Translat. 2025-3-15

[3]
Integrative machine learning frameworks to uncover specific protein signature in neuroendocrine cervical carcinoma.

BMC Cancer. 2025-1-10

[4]
Osteoarthritis Year in Review 2024: Molecular biomarkers of osteoarthritis.

Osteoarthritis Cartilage. 2025-1

本文引用的文献

[1]
Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus.

Br J Sports Med. 2022-12

[2]
Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019.

Arthritis Rheumatol. 2022-7

[3]
PROCOAC (PROspective COhort of A Coruña) description: Spanish prospective cohort to study osteoarthritis.

Reumatol Clin (Engl Ed). 2022-2

[4]
Mechanical metrics may show improved ability to predict osteoarthritis compared to T1rho mapping.

J Biomech. 2021-12-2

[5]
Clinical and molecular associations with outcomes at 2 years after acute knee injury: a longitudinal study in the Knee Injury Cohort at the Kennedy (KICK).

Lancet Rheumatol. 2021-6-24

[6]
Early-stage symptomatic osteoarthritis of the knee - time for action.

Nat Rev Rheumatol. 2021-10

[7]
A clinical model including protein biomarkers predicts radiographic knee osteoarthritis: a prospective study using data from the Osteoarthritis Initiative.

Osteoarthritis Cartilage. 2021-8

[8]
High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis.

Cartilage. 2021-12

[9]
Serpins in cartilage and osteoarthritis: what do we know?

Biochem Soc Trans. 2021-4-30

[10]
Knee osteoarthritis: key treatments and implications for physical therapy.

Braz J Phys Ther. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索