Suppr超能文献

整合纵向承重组织MRI影像组学与神经网络以预测膝关节骨关节炎发病率。

Integration of longitudinal load-bearing tissue MRI radiomics and neural network to predict knee osteoarthritis incidence.

作者信息

Chen Tianyu, Chen Jian, Liu Hao, Liu Zhengrui, Yu Bin, Wang Yang, Zhao Wenbo, Peng Yinxiao, Li Jun, Yang Yun, Wan Hang, Wang Xing, Zhang Zhong, Zhao Deng, Chen Lan, Chen Lili, Liao Ruyu, Liu Shanhong, Zeng Guowei, Wen Zhijia, Wang Yin, Li Xu, Wang Shengjie, Miao Haixiong, Chen Wei, Zhu Yanbin, Wang Xiaogang, Ding Changhai, Wang Ting, Li Shengfa, Zhang Yingze

机构信息

Hebei Medical University Clinical Medicine Postdoctoral Station (Hebei Medical University Third Hospital), Shijiazhuang, Hebei, 050051, People's Republic of China.

Department of Orthopaedic Surgery, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, People's Republic of China.

出版信息

J Orthop Translat. 2025 Mar 15;51:187-197. doi: 10.1016/j.jot.2025.01.007. eCollection 2025 Mar.

Abstract

BACKGROUND

Load-bearing structural degradation is crucial in knee osteoarthritis (KOA) progression, yet limited prediction models use load-bearing tissue radiomics for radiographic (structural) KOA incident.

PURPOSE

We aim to develop and test a Load-Bearing Tissue plus Clinical variable Radiomic Model (LBTC-RM) to predict radiographic KOA incidents.

STUDY DESIGN

Risk prediction study.

METHODS

The 700 knees without radiographic KOA at baseline were included from Osteoarthritis Initiative cohort. We selected 2164 knee MRIs during 4-year follow-up. LBTC-RM, which integrated MRI features of meniscus, femur, tibia, femorotibial cartilage, and clinical variables, was developed in total development cohort (n = 1082, 542 cases vs. 540 controls) using neural network algorithm. Final predictive model was tested in total test cohort (n = 1082, 534 cases vs. 548 controls), which integrated data from five visits: baseline (n = 353, 191 cases vs. 162 controls), 3 years prior KOA (n = 46, 19 cases vs. 27 controls), 2 years prior KOA (n = 143, 77 cases vs. 66 controls), 1 year prior KOA (n = 220, 105 cases vs. 115 controls), and at KOA incident (n = 320, 156 cases vs. 164 controls).

RESULTS

In total test cohort, LBTC-RM predicted KOA incident with AUC (95 % CI) of 0.85 (0.82-0.87); with LBTC-RM aid, performance of resident physicians for KOA prediction were improved, with specificity, sensitivity, and accuracy increasing from 50 %, 60 %, and 55 %-72 %, 73 %, and 72 %, respectively. The LBTC-RM output indicated an increased KOA risk (OR: 20.6, 95 % CI: 13.8-30.6, p < .001). Radiomic scores of load-bearing tissue raised KOA risk (ORs: 1.02-1.9) from 4-year prior KOA whereas 3-dimensional feature score of medial meniscus decreased the OR (0.99) of KOA incident at KOA confirmed. The 2-dimensional feature score of medial meniscus increased the ORs (1.1-1.2) of KOA symptom score from 2-year prior KOA.

CONCLUSIONS

We provided radiomic features of load-bearing tissue to improved KOA risk level assessment and incident prediction. The model has potential clinical applicability in predicting KOA incidents early, enabling physicians to identify high-risk patients before significant radiographic evidence appears. This can facilitate timely interventions and personalized management strategies, improving patient outcomes.

THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE

This study presents a novel approach integrating longitudinal MRI-based radiomics and clinical variables to predict knee osteoarthritis (KOA) incidence using machine learning. By leveraging deep learning for auto-segmentation and machine learning for predictive modeling, this research provides a more interpretable and clinically applicable method for early KOA detection. The introduction of a Radiomics Score System enhances the potential for radiomics as a virtual image-based biopsy tool, facilitating non-invasive, personalized risk assessment for KOA patients. The findings support the translation of advanced imaging and AI-driven predictive models into clinical practice, aiding early diagnosis, personalized treatment planning, and risk stratification for KOA progression. This model has the potential to be integrated into routine musculoskeletal imaging workflows, optimizing early intervention strategies and resource allocation for high-risk populations. Future validation across diverse cohorts will further enhance its clinical utility and generalizability.

摘要

背景

承重结构退变在膝关节骨关节炎(KOA)进展中至关重要,但利用承重组织放射组学预测放射学(结构)KOA发病的预测模型有限。

目的

我们旨在开发并测试一种承重组织加临床变量放射组学模型(LBTC-RM),以预测放射学KOA发病。

研究设计

风险预测研究。

方法

从骨关节炎倡议队列中纳入700例基线时无放射学KOA的膝关节。我们在4年随访期间选取了2164例膝关节MRI。使用神经网络算法在总开发队列(n = 1082,542例病例对540例对照)中开发了整合半月板、股骨、胫骨、股胫软骨的MRI特征以及临床变量的LBTC-RM。最终预测模型在总测试队列(n = 1082,534例病例对548例对照)中进行测试,该队列整合了五次访视的数据:基线(n = 353,191例病例对162例对照)、KOA发病前3年(n = 46,19例病例对27例对照)、KOA发病前2年(n = 143,77例病例对66例对照)、KOA发病前1年(n = 220,105例病例对115例对照)以及KOA发病时(n = 320,156例病例对164例对照)。

结果

在总测试队列中,LBTC-RM预测KOA发病的AUC(95%CI)为0.85(0.82 - 0.87);在LBTC-RM的辅助下,住院医师对KOA的预测性能得到改善,特异性、敏感性和准确性分别从50%、60%和55%提高到72%、73%和72%。LBTC-RM输出显示KOA风险增加(OR:20.6,95%CI:13.8 - 30.6,p <.001)。承重组织的放射组学评分从KOA发病前4年起增加KOA风险(OR:1.02 - 1.9),而内侧半月板的三维特征评分在KOA确诊时降低KOA发病的OR(0.99)。内侧半月板的二维特征评分从KOA发病前2年起增加KOA症状评分的OR(1.1 - 1.2)。

结论

我们提供了承重组织的放射组学特征以改善KOA风险水平评估和发病预测。该模型在早期预测KOA发病方面具有潜在的临床适用性,使医生能够在出现明显放射学证据之前识别高危患者。这有助于及时干预和个性化管理策略,改善患者预后。

本文的转化潜力

本研究提出了一种整合基于纵向MRI的放射组学和临床变量的新方法,利用机器学习预测膝关节骨关节炎(KOA)发病率。通过利用深度学习进行自动分割和机器学习进行预测建模,本研究为早期KOA检测提供了一种更具可解释性和临床适用性的方法。放射组学评分系统的引入增强了放射组学作为基于虚拟图像的活检工具的潜力,便于对KOA患者进行非侵入性、个性化风险评估。研究结果支持将先进的成像和人工智能驱动的预测模型转化为临床实践,有助于KOA进展的早期诊断、个性化治疗计划和风险分层。该模型有可能整合到常规肌肉骨骼成像工作流程中,优化高危人群的早期干预策略和资源分配。未来在不同队列中的验证将进一步提高其临床效用和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd9/11937290/442f1b87fe51/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验