Suppr超能文献

氰基对位芳纶纳米纤维网络形成超硬且富含水的水凝胶海绵。

Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels.

作者信息

Lee Minkyung, Kwak Hojung, Eom Youngho, Park Seul-A, Sakai Takamasa, Jeon Hyeonyeol, Koo Jun Mo, Kim Dowan, Cha Chaenyung, Hwang Sung Yeon, Park Jeyoung, Oh Dongyeop X

机构信息

Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.

Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea.

出版信息

Nat Mater. 2024 Mar;23(3):414-423. doi: 10.1038/s41563-023-01760-5. Epub 2024 Jan 5.

Abstract

The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.

摘要

生物组织的结构-性能悖论,即富含水的多孔结构在保持高机械刚度的同时能有效传递质量,这一悖论仍未得到解决。尽管水凝胶/海绵杂交是理解这一现象的关键,但材料不相容性使其成为一项具有挑战性的任务。在此,我们描述了一种水凝胶/海绵杂化材料(水凝胶海绵),它既表现为超硬的富含水的凝胶,又表现为可可逆挤压的海绵。氰基对芳酰胺纳米纤维的自组织网络容纳的水比其固体成分多约5000倍。水凝胶海绵即使在水浓度超过90 wt%时,也硬如软骨,弹性模量为50-80 MPa,比典型水凝胶硬10-1000倍。它们通过孔隙弹性松弛和120°C的水热压力承受超过85%的压缩应变。这种性能是由两亲性表面、高刚性以及纳米纤维的纤维间相互作用驱动的渗流网络产生的。这些特性能够启发未来生物功能材料的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验