Suppr超能文献

反义寡核苷酸疗法治疗单基因疾病的可能性与局限性。

Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders.

作者信息

Lauffer Marlen C, van Roon-Mom Willeke, Aartsma-Rus Annemieke

机构信息

Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Commun Med (Lond). 2024 Jan 5;4(1):6. doi: 10.1038/s43856-023-00419-1.

Abstract

Antisense oligonucleotides (ASOs) are incredibly versatile molecules that can be designed to specifically target and modify RNA transcripts to slow down or halt rare genetic disease progression. They offer the potential to target groups of patients or can be tailored for individual cases. Nonetheless, not all genetic variants and disorders are amenable to ASO-based treatments, and hence, it is important to consider several factors before embarking on the drug development journey. Here, we discuss which genetic disorders have the potential to benefit from a specific type of ASO approach, based on the pathophysiology of the disease and pathogenic variant type, as well as those disorders that might not be suitable for ASO therapies. We further explore additional aspects, such as the target tissues, intervention time points, and potential clinical benefits, which need to be considered before developing a compound. Overall, we provide an overview of the current potentials and limitations of ASO-based therapeutics for the treatment of monogenic disorders.

摘要

反义寡核苷酸(ASO)是极其通用的分子,可设计用于特异性靶向和修饰RNA转录本,以减缓或阻止罕见遗传病的进展。它们有可能针对特定患者群体,也可针对个别病例进行定制。然而,并非所有基因变异和疾病都适合基于ASO的治疗方法,因此,在开启药物研发之旅前,考虑几个因素很重要。在此,我们将基于疾病的病理生理学和致病变异型,讨论哪些遗传病有潜力从特定类型的ASO方法中获益,以及哪些疾病可能不适合ASO疗法。我们还将进一步探讨在开发化合物之前需要考虑的其他方面,如靶组织、干预时间点和潜在临床益处。总体而言,我们概述了基于ASO的疗法在治疗单基因疾病方面目前的潜力和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c9d/10770028/90a683ba29bf/43856_2023_419_Fig1_HTML.jpg

相似文献

2
Joining forces to develop individualized antisense oligonucleotides for patients with brain or eye diseases: the example of the Dutch Center for RNA Therapeutics.
Ther Adv Rare Dis. 2024 Sep 23;5:26330040241273465. doi: 10.1177/26330040241273465. eCollection 2024 Jan-Dec.
4
Therapeutic antisense oligonucleotides for movement disorders.
Med Res Rev. 2021 Sep;41(5):2656-2688. doi: 10.1002/med.21706. Epub 2020 Jul 13.
6
Antisense Oligonucleotide-Based Therapy of Viral Infections.
Pharmaceutics. 2021 Nov 26;13(12):2015. doi: 10.3390/pharmaceutics13122015.
7
Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside.
Cancers (Basel). 2024 Aug 23;16(17):2940. doi: 10.3390/cancers16172940.
8
Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunities and roadblocks.
Bone. 2020 Sep;138:115461. doi: 10.1016/j.bone.2020.115461. Epub 2020 May 30.
9
Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities.
Front Mol Neurosci. 2022 Jun 27;15:941528. doi: 10.3389/fnmol.2022.941528. eCollection 2022.
10
Emerging Oligonucleotide Therapeutics for Rare Neuromuscular Diseases.
J Neuromuscul Dis. 2021;8(6):869-884. doi: 10.3233/JND-200560.

引用本文的文献

1
The RNA revolution in medicine: from gene regulation to clinical therapeutics.
Anim Cells Syst (Seoul). 2025 Aug 25;29(1):523-543. doi: 10.1080/19768354.2025.2548253. eCollection 2025.
2
Decrypting the Immune Symphony for RNA Vaccines.
Vaccines (Basel). 2025 Aug 20;13(8):882. doi: 10.3390/vaccines13080882.
4
Programmable self-replicating JEV nanotherapeutics redefine RNA delivery in ALS.
Commun Biol. 2025 Aug 26;8(1):1282. doi: 10.1038/s42003-025-08579-7.
6
Population health management genomic new-born screens and multi-omics intercepts.
Front Artif Intell. 2025 Jul 29;7:1496942. doi: 10.3389/frai.2024.1496942. eCollection 2024.
7
Transfection Technologies for Next-Generation Therapies.
J Clin Med. 2025 Aug 5;14(15):5515. doi: 10.3390/jcm14155515.
8
Tailored antisense oligonucleotides for ultrarare CNS diseases: An experience-based best practice framework for individual patient evaluation.
Mol Ther Nucleic Acids. 2025 Jul 1;36(3):102615. doi: 10.1016/j.omtn.2025.102615. eCollection 2025 Sep 9.
9
The rare disease burden: a multidimensional challenge.
Acta Biochim Pol. 2025 Jul 14;72:14777. doi: 10.3389/abp.2025.14777. eCollection 2025.

本文引用的文献

2
A framework for individualized splice-switching oligonucleotide therapy.
Nature. 2023 Jul;619(7971):828-836. doi: 10.1038/s41586-023-06277-0. Epub 2023 Jul 12.
3
Tofersen: First Approval.
Drugs. 2023 Jul;83(11):1039-1043. doi: 10.1007/s40265-023-01904-6.
5
Chemistry, structure and function of approved oligonucleotide therapeutics.
Nucleic Acids Res. 2023 Apr 11;51(6):2529-2573. doi: 10.1093/nar/gkad067.
7
Consensus Guidelines for the Design and Preclinical Efficacy Testing N-of-1 Exon Skipping Antisense Oligonucleotides.
Nucleic Acid Ther. 2023 Jan;33(1):17-25. doi: 10.1089/nat.2022.0060. Epub 2022 Dec 13.
8
Evaluating human mutation databases for "treatability" using patient-customized therapy.
Med. 2022 Nov 11;3(11):740-759. doi: 10.1016/j.medj.2022.08.006.
9
Natural antisense transcripts as drug targets.
Front Mol Biosci. 2022 Sep 27;9:978375. doi: 10.3389/fmolb.2022.978375. eCollection 2022.
10
Trial of Antisense Oligonucleotide Tofersen for ALS.
N Engl J Med. 2022 Sep 22;387(12):1099-1110. doi: 10.1056/NEJMoa2204705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验