School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Methods. 2024 Feb;222:51-56. doi: 10.1016/j.ymeth.2023.12.005. Epub 2024 Jan 4.
The interaction between human microbes and drugs can significantly impact human physiological functions. It is crucial to identify potential microbe-drug associations (MDAs) before drug administration. However, conventional biological experiments to predict MDAs are plagued by drawbacks such as time-consuming, high costs, and potential risks. On the contrary, computational approaches can speed up the screening of MDAs at a low cost. Most computational models usually use a drug similarity matrix as the initial feature representation of drugs and stack the graph neural network layers to extract the features of network nodes. However, different calculation methods result in distinct similarity matrices, and message passing in graph neural networks (GNNs) induces phenomena of over-smoothing and over-squashing, thereby impacting the performance of the model. To address these issues, we proposed a novel graph representation learning model, dual-modal graph learning for microbe-drug association prediction (DMGL-MDA). It comprises a dual-modal embedding module, a bipartite graph network embedding module, and a predictor module. To assess the performance of DMGL-MDA, we compared it against state-of-the-art methods using two benchmark datasets. Through cross-validation, we illustrated the superiority of DMGL-MDA. Furthermore, we conducted ablation experiments and case studies to validate the effective performance of the model.
人体微生物与药物的相互作用会显著影响人体生理功能。在给药之前,识别潜在的微生物-药物关联 (MDA) 至关重要。然而,传统的生物实验来预测 MDA 存在耗时、成本高和潜在风险等缺点。相反,计算方法可以以低成本加速 MDA 的筛选。大多数计算模型通常使用药物相似性矩阵作为药物的初始特征表示,并堆叠图神经网络层来提取网络节点的特征。然而,不同的计算方法会导致不同的相似性矩阵,并且图神经网络 (GNN) 中的消息传递会导致过平滑和过压缩现象,从而影响模型的性能。为了解决这些问题,我们提出了一种新颖的图表示学习模型,即用于微生物-药物关联预测的双模图学习 (DMGL-MDA)。它包括双模嵌入模块、二分图网络嵌入模块和预测器模块。为了评估 DMGL-MDA 的性能,我们使用两个基准数据集将其与最先进的方法进行了比较。通过交叉验证,我们说明了 DMGL-MDA 的优越性。此外,我们进行了消融实验和案例研究来验证模型的有效性能。