Suppr超能文献

基于对比无监督深度生成模型的高倍率扩展显微镜的各向同性多尺度神经元重建。

Isotropic multi-scale neuronal reconstruction from high-ratio expansion microscopy with contrastive unsupervised deep generative models.

机构信息

Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan, ROC.

Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.

出版信息

Comput Methods Programs Biomed. 2024 Feb;244:107991. doi: 10.1016/j.cmpb.2023.107991. Epub 2023 Dec 20.

Abstract

BACKGROUND AND OBJECTIVE

Current methods for imaging reconstruction from high-ratio expansion microscopy (ExM) data are limited by anisotropic optical resolution and the requirement for extensive manual annotation, creating a significant bottleneck in the analysis of complex neuronal structures.

METHODS

We devised an innovative approach called the IsoGAN model, which utilizes a contrastive unsupervised generative adversarial network to sidestep these constraints. This model leverages multi-scale and isotropic neuron/protein/blood vessel morphology data to generate high-fidelity 3D representations of these structures, eliminating the need for rigorous manual annotation and supervision. The IsoGAN model introduces simplified structures with idealized morphologies as shape priors to ensure high consistency in the generated neuronal profiles across all points in space and scalability for arbitrarily large volumes.

RESULTS

The efficacy of the IsoGAN model in accurately reconstructing complex neuronal structures was quantitatively assessed by examining the consistency between the axial and lateral views and identifying a reduction in erroneous imaging artifacts. The IsoGAN model accurately reconstructed complex neuronal structures, as evidenced by the consistency between the axial and lateral views and a reduction in erroneous imaging artifacts, and can be further applied to various biological samples.

CONCLUSION

With its ability to generate detailed 3D neurons/proteins/blood vessel structures using significantly fewer axial view images, IsoGAN can streamline the process of imaging reconstruction while maintaining the necessary detail, offering a transformative solution to the existing limitations in high-throughput morphology analysis across different structures.

摘要

背景与目的

目前,从高倍扩展显微镜(ExM)数据进行成像重建的方法受到各向异性光学分辨率的限制,并且需要广泛的手动注释,这在分析复杂神经元结构时造成了重大瓶颈。

方法

我们设计了一种名为 IsoGAN 模型的创新方法,该方法利用对比无监督生成对抗网络来规避这些限制。该模型利用多尺度各向同性神经元/蛋白质/血管形态数据生成这些结构的高保真 3D 表示,无需进行严格的手动注释和监督。IsoGAN 模型引入简化结构,具有理想化的形态作为形状先验,以确保在空间中所有点生成的神经元轮廓具有高度一致性,并为任意大体积提供可扩展性。

结果

通过检查轴向和侧向视图之间的一致性以及识别成像伪影的减少,定量评估了 IsoGAN 模型准确重建复杂神经元结构的效果。IsoGAN 模型准确重建了复杂的神经元结构,这体现在轴向和侧向视图之间的一致性以及成像伪影的减少,并且可以进一步应用于各种生物样本。

结论

IsoGAN 能够使用明显更少的轴向视图图像生成详细的 3D 神经元/蛋白质/血管结构,从而在保持必要细节的同时简化成像重建过程,为不同结构的高通量形态分析提供了一种变革性的解决方案,解决了现有方法的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验