文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的单视图时间分辨率锥束CT运动补偿

Deep learning-based cone-beam CT motion compensation with single-view temporal resolution.

作者信息

Maier Joscha, Sawall Stefan, Arheit Marcel, Paysan Pascal, Kachelrieß Marc

机构信息

Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.

出版信息

Med Phys. 2025 Jul;52(7):e17911. doi: 10.1002/mp.17911. Epub 2025 Jun 4.


DOI:10.1002/mp.17911
PMID:40467957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12258004/
Abstract

BACKGROUND: Cone-beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motion bins. Subsequently, these bins can be reconstructed individually before further post-processing may be applied to improve image quality. While this concept is useful for periodic motion patterns, it fails in case of non-periodic motion as observed, for example, in irregularly breathing patients. PURPOSE: To address this issue and to increase temporal resolution, we propose the deep single angle-based motion compensation (SAMoCo). METHODS: To avoid gating, and therefore its downsides, the deep SAMoCo trains a U-net-like network to predict displacement vector fields (DVFs) representing the motion that occurred between any two given time points of the scan. To do so, 4D clinical CT scans are used to simulate 4D CBCT scans as well as the corresponding ground truth DVFs that map between the different motion states of the scan. The network is then trained to predict these DVFs as a function of the respective projection views and an initial 3D reconstruction. Once the network is trained, an arbitrary motion state corresponding to a certain projection view of the scan can be recovered by estimating DVFs from any other state or view and by considering them during reconstruction. RESULTS: Applied to 4D CBCT simulations of breathing patients, the deep SAMoCo provides high-quality reconstructions for periodic and non-periodic motion. Here, the deviations with respect to the ground truth are less than 27 HU on average, while respiratory motion, or the diaphragm position, can be resolved with an accuracy of about 0.75 mm. Similar results were obtained for real measurements where a high correlation with external motion monitoring signals could be observed, even in patients with highly irregular respiration. CONCLUSIONS: The ability to estimate DVFs as a function of two arbitrary projection views and an initial 3D reconstruction makes deep SAMoCo applicable to arbitrary motion patterns with single-view temporal resolution. Therefore, the deep SAMoCo is particularly useful for cases with unsteady breathing, compensation of residual motion during a breath-hold scan, or scans with fast gantry rotation times in which the data acquisition only covers a very limited number of breathing cycles. Furthermore, not requiring gating signals may simplify the clinical workflow and reduces the time needed for patient preparation.

摘要

背景:受运动影响的锥形束CT(CBCT)扫描通常需要进行运动补偿,以减少伪影或重建患者的四维(3D+时间)图像。为此,大多数现有策略依赖于某种门控策略,该策略将采集到的投影分类到运动区间中。随后,可以分别重建这些区间,然后再进行进一步的后处理以提高图像质量。虽然这个概念对于周期性运动模式很有用,但在非周期性运动的情况下(例如在不规则呼吸的患者中观察到的情况)它就失效了。 目的:为了解决这个问题并提高时间分辨率,我们提出了基于深度单角度的运动补偿(SAMoCo)方法。 方法:为了避免门控及其缺点,深度SAMoCo训练一个类似U-net的网络,以预测表示扫描中任意两个给定时间点之间发生的运动的位移矢量场(DVF)。为此,使用四维临床CT扫描来模拟四维CBCT扫描以及在扫描的不同运动状态之间映射的相应真实DVF。然后训练该网络根据各自的投影视图和初始三维重建来预测这些DVF。一旦网络训练完成,通过从任何其他状态或视图估计DVF并在重建过程中考虑它们,可以恢复与扫描的某个投影视图对应的任意运动状态。 结果:应用于呼吸患者的四维CBCT模拟,深度SAMoCo为周期性和非周期性运动提供了高质量的重建。在这里,相对于真实值的偏差平均小于27HU,而呼吸运动或膈肌位置可以以约0.75mm的精度分辨。在实际测量中也获得了类似的结果,即使在呼吸非常不规则的患者中,也能观察到与外部运动监测信号的高度相关性。 结论:根据任意两个投影视图和初始三维重建估计DVF的能力使深度SAMoCo适用于具有单视图时间分辨率的任意运动模式。因此,深度SAMoCo对于呼吸不稳定的情况、屏气扫描期间残余运动的补偿或扫描机架旋转速度快(数据采集仅涵盖非常有限数量的呼吸周期)的情况特别有用。此外,不需要门控信号可以简化临床工作流程并减少患者准备所需的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/422809e5ccf0/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/addefda9545b/MP-52-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/830c934ccd40/MP-52-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/26eaca4798e4/MP-52-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/87aab88a4e2e/MP-52-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/dda63d8323a1/MP-52-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/7f08425d17cf/MP-52-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/948fae8d90f6/MP-52-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/4762d31f0056/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/422809e5ccf0/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/addefda9545b/MP-52-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/830c934ccd40/MP-52-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/26eaca4798e4/MP-52-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/87aab88a4e2e/MP-52-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/dda63d8323a1/MP-52-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/7f08425d17cf/MP-52-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/948fae8d90f6/MP-52-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/4762d31f0056/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/12258004/422809e5ccf0/MP-52-0-g002.jpg

相似文献

[1]
Deep learning-based cone-beam CT motion compensation with single-view temporal resolution.

Med Phys. 2025-7

[2]
An open-source deep learning framework for respiratory motion monitoring and volumetric imaging during radiation therapy.

Med Phys. 2025-7

[3]
Sexual Harassment and Prevention Training

2025-1

[4]
Non-orthogonal kV imaging guided patient position verification in non-coplanar radiation therapy with dataset-free implicit neural representation.

Med Phys. 2025-5-19

[5]
Deep residual network-based projection interpolation and post-processing techniques for thoracic patient CBCT reconstruction.

Med Phys. 2025-7

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
Evaluation of 4D cone-beam CT reconstruction methods for lung images acquired using rapid cone-beam CT acquisition: a phantom study.

Phys Med Biol. 2025-6-30

[8]
Short-Term Memory Impairment

2025-1

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Clinical comparison of adaptive 4DCBCT scanning protocols for lung tumor motion assessment.

J Appl Clin Med Phys. 2025-7

引用本文的文献

[1]
A Hybrid Approach Combining Dual-Energy and Inpainting Methods for Metal Artifact Reduction in Dentomaxillofacial CBCT: A Proof-of-Concept Phantom Study.

Ann Biomed Eng. 2025-7-20

本文引用的文献

[1]
Data-driven rapid 4D cone-beam CT reconstruction for new generation linacs.

Phys Med Biol. 2024-9-13

[2]
Image quality characterization of an ultra-high-speed kilovoltage cone-beam computed tomography imaging system on an O-ring linear accelerator.

J Appl Clin Med Phys. 2024-5

[3]
Four-Dimensional Cone Beam CT Imaging Using a Single Routine Scan via Deep Learning.

IEEE Trans Med Imaging. 2023-5

[4]
Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.

Med Phys. 2023-2

[5]
Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks.

Med Phys. 2022-10

[6]
Reference-free learning-based similarity metric for motion compensation in cone-beam CT.

Phys Med Biol. 2022-6-16

[7]
The first-in-human implementation of adaptive 4D cone beam CT for lung cancer radiotherapy: 4DCBCT in less time with less dose.

Radiother Oncol. 2021-8

[8]
CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement.

IEEE Trans Med Imaging. 2021-11

[9]
Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT.

Med Phys. 2021-7

[10]
A motion correction approach for oral and maxillofacial cone-beam CT imaging.

Phys Med Biol. 2021-6-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索