Hagerman D D
J Biol Chem. 1987 Feb 15;262(5):2398-400.
Microsomal estrogen synthetase (cytochrome P-450ES), also known as aromatase, was purified from fresh human placenta microsomes by DEAE-Trisacryl and testosterone-agarose chromatography. Estrogen synthetase assays were done with androstenedione as substrate, NADPH as electron donor, and a partially purified P-450 reductase from human placenta as the electron carrier. The specific cytochrome P-450 content of the purified P-450 was 0.67 nmol mg-1 of protein, and the preparation contained no cytochrome P-420. The absorbance maximum was 448.5 nm. The specific estrogen synthetase activity of the purified P-450ES fraction was 35 nmol min-1 nmol-1 of cytochrome P-450 or 23.3 nmol min-1 mg-1 of protein. The latter value shows a 179-fold purification with a yield greater than 1% in the two-step procedure. Kinetic constants for the reaction were measured with androstenedione as the aromatizable substrate. The Km was 1.4 nM and the Vmax was 37 nmol min-1 nmol-1 of P-450. The purified enzyme aromatized androstenedione and testosterone at identical rates; androstenedione gave only estrone, and testosterone gave only estradiol-17 beta. Dehydroepiandrosterone was not detectably aromatized or otherwise metabolized. Neither 16 alpha-hydroxytestosterone nor 16 alpha-hydroxyandrostenedione was aromatized. No hydroxysteroid dehydrogenase or reductase was detected in direct assays. No free reaction intermediates were detected in aromatization assay incubation mixtures. The purity of the product and the simplicity of the preparation recommend it for use in further studies of the enzyme.