Suppr超能文献

肿瘤治疗中的真实世界证据研究:希望还是炒作?

Real-World Evidence Studies in Oncology Therapeutics: Hope or Hype?

作者信息

Thakur Sayanta

机构信息

Department of Pharmacology, MJNMC&H, Vivekananda Street, Pilkhana, Cooch Behar 736101 India.

出版信息

Indian J Surg Oncol. 2023 Dec;14(4):829-835. doi: 10.1007/s13193-023-01784-y. Epub 2023 Jun 21.

Abstract

Randomized controlled trial (RCT) remains a gold standard in evidence-based medicine for assessing the efficacy and safety of cancer therapies. However, due to some inherent methodological limitations of RCT, such as stringent inclusion criteria, highly specific treatment, ethical and scientific compromise in rare cancer, and inability to adequately assess safety, real-world evidence (RWE) has been adjudged as a suitable option to complement data obtained from RCT. Moreover, in the context of cancer therapeutics, few notable merits pertain to developing a novel product for rare cancer subtypes, establishing new indications for already approved drugs, optimization of treatment regimen and sequence, a better description of long-term safety, and supporting the reimbursement-related decision. However, the implementation of RWE for the aforementioned purposes will be limited by various challenges, especially in the context of developing economies such as India. Special attention should be given to the availability of data, maintaining the quality standard, and establishing stringent regulations for privacy and security along with active regulatory engagement with relevant stakeholders. Such activities will be key to facilitating the use of RWE in cancer therapeutics.

摘要

随机对照试验(RCT)仍然是循证医学中评估癌症治疗疗效和安全性的金标准。然而,由于RCT存在一些固有的方法学局限性,如严格的纳入标准、高度特异性的治疗、罕见癌症中的伦理和科学妥协以及无法充分评估安全性,真实世界证据(RWE)已被判定为补充RCT所获数据的合适选择。此外,在癌症治疗领域,开发针对罕见癌症亚型的新产品、为已获批药物确立新适应症、优化治疗方案和顺序、更好地描述长期安全性以及支持与报销相关的决策等方面存在一些显著优点。然而,为上述目的实施RWE将受到各种挑战的限制,尤其是在印度等发展中经济体的背景下。应特别关注数据的可用性、维持质量标准、为隐私和安全制定严格法规以及与相关利益攸关方积极进行监管互动。此类活动将是促进RWE在癌症治疗中应用的关键。

相似文献

1
Real-World Evidence Studies in Oncology Therapeutics: Hope or Hype?
Indian J Surg Oncol. 2023 Dec;14(4):829-835. doi: 10.1007/s13193-023-01784-y. Epub 2023 Jun 21.
2
Use of real-world evidence for oncology clinical decision making in emerging economies.
Future Oncol. 2021 Aug;17(22):2951-2960. doi: 10.2217/fon-2021-0425. Epub 2021 May 28.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Bridging ideal studies and real-world practice: the potential role of real-world evidence in reproductive medicine.
Reprod Biomed Online. 2025 Apr;50(4):104807. doi: 10.1016/j.rbmo.2025.104807.
7
Real-world evidence research based on big data: Motivation-challenges-success factors.
Onkologe (Berl). 2018;24(Suppl 2):91-98. doi: 10.1007/s00761-018-0358-3. Epub 2018 Jun 7.
10
Payer perceptions of the use of real-world evidence in oncology-based decision making.
J Manag Care Spec Pharm. 2021 Aug;27(8):1096-1105. doi: 10.18553/jmcp.2021.27.8.1096.

本文引用的文献

1
Harnessing Real-World Evidence to Advance Cancer Research.
Curr Oncol. 2023 Feb 2;30(2):1844-1859. doi: 10.3390/curroncol30020143.
2
Best practices in the real-world data life cycle.
PLOS Digit Health. 2022 Jan 18;1(1):e0000003. doi: 10.1371/journal.pdig.0000003. eCollection 2022 Jan.
4
Real-World Data in the Postapproval Setting as Applied by the EMA and the US FDA.
Clin Ther. 2022 Feb;44(2):306-322. doi: 10.1016/j.clinthera.2021.12.010. Epub 2022 Jan 21.
7
Use of real-world evidence for oncology clinical decision making in emerging economies.
Future Oncol. 2021 Aug;17(22):2951-2960. doi: 10.2217/fon-2021-0425. Epub 2021 May 28.
8
Generalisability through local validation: overcoming barriers due to data disparity in healthcare.
BMC Ophthalmol. 2021 May 21;21(1):228. doi: 10.1186/s12886-021-01992-6.
10
Real-world evidence and product development: Opportunities, challenges and risk mitigation.
Wien Klin Wochenschr. 2021 Aug;133(15-16):840-846. doi: 10.1007/s00508-021-01851-w. Epub 2021 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验