Suppr超能文献

一种用于易感性映射的基于潜在编码的多变量调制网络。

A latent code based multi-variable modulation network for susceptibility mapping.

作者信息

Zhou Weibin, Xi Jiaxiu, Bao Lijun

机构信息

Department of Electronic Science, Xiamen University, Xiamen, China.

出版信息

Front Neurosci. 2023 Dec 21;17:1308829. doi: 10.3389/fnins.2023.1308829. eCollection 2023.

Abstract

Quantitative susceptibility mapping (QSM) is a technique for obtaining quantitative information on tissue susceptibility and has shown promising potential for clinical applications, in which the magnetic susceptibility is calculated by solving an ill-posed inverse problem. Recently, deep learning-based methods are proposed to address this issue, but the diversity of data distribution was not well considered, and thus the model generalization is limited in clinical applications. In this paper, we propose a Latent Code based Multi-Variable modulation network for QSM reconstruction (LCMnet). Particularly, a specific modulation module is exploited to incorporate three variables, i.e., field map, magnitude image, and initial susceptibility. The latent code in the modulated convolution is learned from feature maps of the field data using the encoder-decoder framework. The susceptibility map pre-estimated from simple thresholding is the constant input of the module, thereby enhancing the network stability and accelerating training convergence. As another input, multi-level features generated by a cross-fusion block integrate the information of field and magnitude data effectively. Experimental results on human brain data, challenge data, clinical data and synthetic data demonstrate that the proposed method LCMnet can achieve outstanding performance on accurate susceptibility measurement and also excellent generalization.

摘要

定量磁化率成像(QSM)是一种获取组织磁化率定量信息的技术,在临床应用中显示出了广阔的前景,其中磁化率是通过解决一个不适定的逆问题来计算的。最近,有人提出了基于深度学习的方法来解决这个问题,但没有充分考虑数据分布的多样性,因此模型在临床应用中的泛化能力有限。在本文中,我们提出了一种用于QSM重建的基于潜在编码的多变量调制网络(LCMnet)。具体来说,利用一个特定的调制模块来合并三个变量,即场图、幅度图像和初始磁化率。调制卷积中的潜在编码是使用编码器-解码器框架从场数据的特征图中学习得到的。通过简单阈值处理预先估计的磁化率图是该模块的恒定输入,从而增强了网络稳定性并加速了训练收敛。作为另一个输入,由交叉融合块生成的多级特征有效地整合了场数据和幅度数据的信息。在人脑数据、挑战数据、临床数据和合成数据上的实验结果表明,所提出的方法LCMnet在准确的磁化率测量方面可以取得优异的性能,并且具有出色的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff91/10771344/a4f2f0076368/fnins-17-1308829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验