Graf Simon, Wohlgemuth Walter A, Deistung Andreas
University Clinic and Polyclinic for Radiology, University Hospital Halle (Saale), Halle, Germany.
Halle MR Imaging Core Facility, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
Front Neurosci. 2024 Mar 11;18:1366165. doi: 10.3389/fnins.2024.1366165. eCollection 2024.
Quantitative susceptibility mapping (QSM) has attracted considerable interest for tissue characterization (e.g., iron and calcium accumulation, myelination, venous vasculature) in the human brain and relies on extensive data processing of gradient-echo MRI phase images. While deep learning-based field-to-susceptibility inversion has shown great potential, the acquisition parameters applied in clinical settings such as image resolution or image orientation with respect to the magnetic field have not been fully accounted for. Furthermore, the lack of comprehensive training data covering a wide range of acquisition parameters further limits the current QSM deep learning approaches. Here, we propose the integration of a priori information of imaging parameters into convolutional neural networks with our approach, adaptive convolution, that learns the mapping between the additional presented information (acquisition parameters) and the changes in the phase images associated with these varying acquisition parameters. By associating information with the network parameters itself, the optimal set of convolution weights is selected based on data-specific attributes, leading to generalizability towards changes in acquisition parameters. Moreover, we demonstrate the feasibility of pre-training on synthetic data and transfer learning to clinical brain data to achieve substantial improvements in the computation of susceptibility maps. The adaptive convolution 3D U-Net demonstrated generalizability in acquisition parameters on synthetic and in-vivo data and outperformed models lacking adaptive convolution or transfer learning. Further experiments demonstrate the impact of the side information on the adaptive model and assessed susceptibility map computation on simulated pathologic data sets and measured phase data.
定量磁化率成像(QSM)在人脑组织特征化(如铁和钙的积累、髓鞘形成、静脉血管系统)方面引起了广泛关注,并且依赖于对梯度回波MRI相位图像进行大量数据处理。虽然基于深度学习的场到磁化率反演已显示出巨大潜力,但临床环境中应用的采集参数,如图像分辨率或相对于磁场的图像方向,尚未得到充分考虑。此外,缺乏涵盖广泛采集参数的综合训练数据进一步限制了当前的QSM深度学习方法。在此,我们提出将成像参数的先验信息整合到卷积神经网络中,采用我们的自适应卷积方法,该方法学习额外呈现的信息(采集参数)与这些变化的采集参数相关的相位图像变化之间的映射。通过将信息与网络参数本身相关联,基于数据特定属性选择最佳卷积权重集,从而实现对采集参数变化的泛化能力。此外,我们展示了在合成数据上进行预训练和将迁移学习应用于临床脑数据以在磁化率图计算中实现显著改进的可行性。自适应卷积3D U-Net在合成数据和体内数据的采集参数方面表现出泛化能力,并且优于缺乏自适应卷积或迁移学习的模型。进一步的实验证明了辅助信息对自适应模型的影响,并评估了在模拟病理数据集和测量相位数据上的磁化率图计算。