Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
J Mol Neurosci. 2024 Jan 8;74(1):6. doi: 10.1007/s12031-023-02182-3.
The objective of this study is to investigate the potential biomarkers and therapeutic target genes for Parkinson's disease (PD). We analyzed four datasets (GSE8397, GSE20292, GSE20163, GSE20164) from the Gene Expression Omnibus database. We employed weighted gene co-expression network analysis and differential expression analysis to select genes and perform functional analysis. We applied three algorithms, namely, random forest, support vector machine recursive feature elimination, and least absolute shrinkage and selection operator, to identify hub genes, perform functional analysis, and assess their clinical diagnostic potential using receiver operating characteristic (ROC) curve analysis. We employed the xCell website to evaluate differences in the composition patterns of immune cells in the GEO datasets. We also collected serum samples from PD patients and established PD cell model to validate the expression of hub genes using enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Our findings identified SV2C and DENR as two hub genes for PD and decreased in PD brain tissue compared with controls. ROC analysis showed effectively value of SV2C and DENR to diagnose PD, and they were downregulated in the serum of PD patients and cell model. Functional analysis revealed that dopamine vesicle transport and synaptic vesicle recycling are crucial pathways in PD. Besides, the differences in the composition of immune cells, especially basophils and T cells, were discovered between PD and controls. In summary, our study identifies SV2C and DENR as potential biomarkers for diagnosing PD and provides a new perspective for exploring the molecular mechanisms of PD.
本研究旨在探讨帕金森病(PD)的潜在生物标志物和治疗靶标基因。我们分析了来自基因表达综合数据库的四个数据集(GSE8397、GSE20292、GSE20163、GSE20164)。我们采用加权基因共表达网络分析和差异表达分析来筛选基因并进行功能分析。我们应用了三种算法,即随机森林、支持向量机递归特征消除和最小绝对收缩和选择算子,来识别枢纽基因,进行功能分析,并通过接收者操作特征(ROC)曲线分析评估其临床诊断潜力。我们使用 xCell 网站评估 GEO 数据集免疫细胞组成模式的差异。我们还收集了 PD 患者的血清样本并建立了 PD 细胞模型,通过酶联免疫吸附测定和实时定量聚合酶链反应验证枢纽基因的表达。我们的研究结果确定了 SV2C 和 DENR 为 PD 的两个枢纽基因,与对照组相比,在 PD 脑组织中表达降低。ROC 分析表明 SV2C 和 DENR 有效值可用于诊断 PD,并且它们在 PD 患者的血清和细胞模型中下调。功能分析显示多巴胺囊泡转运和突触囊泡回收是 PD 的关键途径。此外,还发现 PD 和对照组之间免疫细胞组成的差异,特别是嗜碱性粒细胞和 T 细胞。总之,本研究确定了 SV2C 和 DENR 作为诊断 PD 的潜在生物标志物,并为探索 PD 的分子机制提供了新视角。