Suppr超能文献

加权基因共表达网络分析揭示帕金森病的特定模块和生物标志物。

Weighted gene co-expression network analysis reveals specific modules and biomarkers in Parkinson's disease.

机构信息

Department of Emergency, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Neurosci Lett. 2020 May 29;728:134950. doi: 10.1016/j.neulet.2020.134950. Epub 2020 Apr 8.

Abstract

BACKGROUND

Parkinson's disease (PD) ranks as the second most frequently occurring neurodegenerative disease. The precise pathogenic mechanism of this disease remains unknown. The aim of the present study was to identify the biomarkers in PD and classify the primary differentially expressed genes (DEGs).

METHODS

The present study searched for and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differences in mRNA expression in the substantia nigra (SN) and blood of patients with PD and healthy controls. In addition, in order to investigate the biological functions of the classified dysregulated genes, the present study utilized Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), reverse transcription-quantitative PCR (RT-qPCR), gene co-expression network analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A receiver operating characteristic (ROC) curve was applied to assay TMEM243 as a diagnostic marker.

RESULTS

Between PD and controls in GSE20292, the present study identified 1862 DEGs. Using the weighted gene co-expression network analysis, the present study identified 15 modules in PD. The module preservation analysis revealed that the tan, blue and green-yellow modules were the most stable. KEGG pathway analysis revealed that five DEGs in the black module were significantly enriched in the ubiquitin-mediated proteolysis pathway, nucleotide excision repair pathway, mismatch repair pathway. The present study selected 303 genes with high connectivity in blue, green-yellow and tan modules as hub genes, where 58 were differentially expressed in both the GSE20292 and GSE54536 datasets. In the SN and blood, 11 genes exhibited the same trend of expression. Furthermore, in the blood samples of patients with PD, the results displayed a significant upregulation of TMEM243. The expression levels of CCR4, CAMK1D, ACTR1B and SPSB3 increased, while both the levels of INA and PSMD4 decreased. These findings are consistent with the bioinformatics analysis results but are not statistically significant. TMEM243 can be considered as a diagnostic biomarker (area under the curve = 0.694; sensitivity, 80 %; specificity, 56 %; P < 0.018).

CONCLUSION

TMEM243 was distinctly upregulated in the blood samples of patients with PD, as validated via RT-qPCR, and was highly sensitive, revealing its potential as a biomarker for the future diagnosis of PD.

摘要

背景

帕金森病(PD)是第二常见的神经退行性疾病。这种疾病的确切发病机制尚不清楚。本研究的目的是鉴定 PD 中的生物标志物并对主要差异表达基因(DEGs)进行分类。

方法

本研究从基因表达综合数据库中搜索并下载了 mRNA 表达数据,以鉴定 PD 患者和健康对照者的 SN 和血液中 mRNA 表达的差异。此外,为了研究分类失调基因的生物学功能,本研究利用基因集富集分析(GSEA)、基因本体论(GO)、逆转录定量 PCR(RT-qPCR)、基因共表达网络分析和京都基因与基因组百科全书(KEGG)途径分析。应用受试者工作特征(ROC)曲线检测 TMEM243 作为诊断标志物。

结果

在 GSE20292 中,本研究在 PD 与对照组之间鉴定出 1862 个 DEGs。利用加权基因共表达网络分析,本研究在 PD 中鉴定出 15 个模块。模块保存分析显示,tan、blue 和 green-yellow 模块最稳定。KEGG 途径分析显示,黑色模块中的五个 DEG 显著富集于泛素介导的蛋白酶体途径、核苷酸切除修复途径、错配修复途径。本研究选择 blue、green-yellow 和 tan 模块中具有高连通性的 303 个基因作为枢纽基因,其中 58 个基因在 GSE20292 和 GSE54536 数据集均差异表达。在 SN 和血液中,11 个基因表现出相同的表达趋势。此外,在 PD 患者的血液样本中,TMEM243 的表达显著上调。CCR4、CAMK1D、ACTR1B 和 SPSB3 的表达水平升高,而 INA 和 PSMD4 的水平降低。这些发现与生物信息学分析结果一致,但无统计学意义。TMEM243 可作为诊断标志物(曲线下面积 = 0.694;敏感性,80 %;特异性,56 %;P < 0.018)。

结论

通过 RT-qPCR 验证,TMEM243 在 PD 患者的血液样本中明显上调,具有较高的敏感性,表明其具有作为 PD 未来诊断标志物的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验